NI 43-101 TECHNICAL REPORT ON THE
TATOGGA LAKE GOLD/COPPER PROJECT,
BRITISH COLUMBIA,
CANADA

Prepared For

New Chris Minerals Ltd
1710 – 1177 West Hastings Street
Vancouver, British Columbia
Canada V6E 2LE

and

Manera Capital Corporation
423 East 10th Street
North Vancouver, British Columbia
Canada V7L 2E5

Prepared By

Qualified Person: Cornelis A. Dekker, Pr.Sci.Nat.
44 Kasteel Street
P. O. Box 90908
Windhoek
NAMIBIA

Qualified Person: Clinton P. Smyth, P. Geo
301 – 850 West Hastings Street
Vancouver, British Columbia
CANADA V6C 1E1

12 August 2016
Table of Contents

1 Summary ...1
2 Introduction ..4
3 Reliance on Other Experts ..5
4 Property Description and Location ..6
 4.1 Location .. 6
 4.2 Mineral Rights ..6
 4.3 Ownership ..10
 4.4 Proposed Manara Capital Corporation Qualifying Transaction ...11
 4.5 Permitting and Work Requirements ...12
 4.6 New Chris Minerals Expenditures on the Property ..15
5 Access, Climate, Local Resources, Infrastructure and Physiology ..16
 5.1 Access .. 16
 5.2 Climate .. 16
 5.3 Local Resources ..16
 5.4 Infrastructure ...17
 5.5 Physiography ...19
6 History ..20
 6.1 Summary ..20
 6.2 Historical Exploration Activities ..22
7 Geological Setting and Mineralisation .. 25
 7.1 Introduction .. 25
 7.2 Regional Geology ..25
 7.3 Regional Mineralisation ..32
 7.4 Property Geology ...35
 7.4.1 Tatogga Lake Property Geology ...35
 7.4.2 Saddle Target Geology and Mineralisation ...38
 7.4.3 The Geology and Mineralisation Over the Quash and Pass Gossan Target Areas 43
8 Deposit Types ..45
 8.1 Introduction .. 45
 8.2 The Brucejack Model ...45
9 Exploration ...48
 9.1 Introduction .. 48
 9.2 Airborne Geophysics – Tatogga Lake Property .. 48
 9.2.1 Introduction .. 48
 9.2.2 Airborne Magnetic Survey ..48
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Start Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.3</td>
<td>Airborne Electro-Magnetic Survey</td>
<td>50</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Airborne Radiometric Survey</td>
<td>52</td>
</tr>
<tr>
<td>9.3</td>
<td>Exploration Results for the Saddle Target Area</td>
<td>53</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Rock Chip Sampling</td>
<td>53</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Soil Sampling Results</td>
<td>55</td>
</tr>
<tr>
<td>9.4</td>
<td>Exploration Results for Quash and the Pass Gossan Area</td>
<td>59</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Rock Chip Sampling</td>
<td>59</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Soil Sampling Results</td>
<td>60</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Quash/Pass Gossan Prospect Geophysics</td>
<td>63</td>
</tr>
<tr>
<td>9.5</td>
<td>Exploration Results for the Valleyside Gold Target</td>
<td>69</td>
</tr>
<tr>
<td>10</td>
<td>Drilling</td>
<td>71</td>
</tr>
<tr>
<td>11</td>
<td>Sample Preparation, Analysis and Security</td>
<td>72</td>
</tr>
<tr>
<td>11.1</td>
<td>Sampling Procedure</td>
<td>72</td>
</tr>
<tr>
<td>11.2</td>
<td>Soil Sample Preparation and Analysis</td>
<td>73</td>
</tr>
<tr>
<td>11.3</td>
<td>Rock Sample Preparation and Analysis</td>
<td>74</td>
</tr>
<tr>
<td>11.4</td>
<td>Appropriateness of Sample Preparation and Security and Analytical Procedures</td>
<td>74</td>
</tr>
<tr>
<td>12</td>
<td>Data Verification</td>
<td>75</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>75</td>
</tr>
<tr>
<td>12.2</td>
<td>Field Verification – Pre-2014</td>
<td>75</td>
</tr>
<tr>
<td>12.3</td>
<td>Field Verification - 2014</td>
<td>79</td>
</tr>
<tr>
<td>13</td>
<td>Mineral Processing and Metallurgical Testing</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>Mineral Resource Estimates</td>
<td>81</td>
</tr>
<tr>
<td>15</td>
<td>Mineral Reserves Estimates</td>
<td>81</td>
</tr>
<tr>
<td>16</td>
<td>Adjacent Properties</td>
<td>82</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>82</td>
</tr>
<tr>
<td>16.2</td>
<td>Skeena Resources Limited’s GJ Property</td>
<td>82</td>
</tr>
<tr>
<td>16.3</td>
<td>Colorado Resources North ROK Property</td>
<td>84</td>
</tr>
<tr>
<td>16.4</td>
<td>West Cirque Resources Castle Property</td>
<td>87</td>
</tr>
<tr>
<td>16.5</td>
<td>Imperial Metals Red Chris Mine</td>
<td>87</td>
</tr>
<tr>
<td>17</td>
<td>Other Relevant Information</td>
<td>89</td>
</tr>
<tr>
<td>17.1</td>
<td>Other New Chris Minerals Properties Near Tatogga Lake</td>
<td>89</td>
</tr>
<tr>
<td>18</td>
<td>Interpretation and Conclusions</td>
<td>91</td>
</tr>
<tr>
<td>18.1</td>
<td>General Observation</td>
<td>91</td>
</tr>
<tr>
<td>18.2</td>
<td>Project Area</td>
<td>91</td>
</tr>
<tr>
<td>18.3</td>
<td>The Saddle Target Area</td>
<td>91</td>
</tr>
<tr>
<td>18.4</td>
<td>The Quash/Pass Gossan Area</td>
<td>92</td>
</tr>
<tr>
<td>19</td>
<td>Recommendations</td>
<td>94</td>
</tr>
</tbody>
</table>
19.1 Project Area ... 94
19.2 The Saddle Target Area... 94
19.3 The Quash/Pass Gossan Area .. 95
19.4 Scope of Recommended Exploration and Cost Estimate .. 95

20 References .. 97

21 Date and Signature Page .. 100

22 CertificateS Of Qualified Persons ... 101
List of Tables

Table 1.1 – Scope and Cost Estimate for Recommended Exploration 3
Table 4.2_1 – Details of Various Claims That Constitute the Tatogga Lake Project Area 8
Table 4.5_1 – NCM’s Expenditure on the Property 15
Table 5.2_1 – Dease Lake Climate Data 16
Table 6.1_1 – Historical Exploration Activities in the Project Area 21
Table 7.3_1 – Summary Descriptions of Mineral Occurrences In and Around the Tatogga Lake Area 34
Table 9.3.1_1 – Selected Assay Results For Rock Samples From the Saddle Target Area 53
Table 9.4.1_1 – Selected Assay Results For Rock Samples From the Quash/Pass Gossan Area 60
Table 12.2_1 – Summary of Sample Verification Carried Out 76
Table 16.3_1 – Resource Statement for the North ROK Property (Colorado Resources, Jan ’14) 84
Table 19.4_1 – Scope and Cost Estimate for Recommended Exploration 96

List of Figures

Figure 4.1_1 – Location of the Tatogga Lake Property 6
Figure 4.2_1 – Tatogga Lake Property Claims Map 7
Figure 4.4_1 – Overview of the Permitting Process in British Columbia 13
Figure 4.4_2 – NCM Current Permit for Drilling at Tatogga Lake 14
Figure 5.4_1 – Mineral and Coal Exploration and Development Projects in British Columbia in 2013 17
Figure 5.4_2 – The Northwest Transmission Line 18
Figure 5.4_3 – The Northwest Transmission Line Extension 19
Figure 6.1_1 – Named Mineral Occurrences on the Project Area and Adjacent Properties 20
Figure 6.2_1 – Location of Geoscience BC Block 3 Airborne Magnetics Survey 23
Figure 6.2_2 – Residual Magnetics over Block 3 of Geoscience BC’s QUEST Northwest Project 24
Figure 7.2_1 – Paleogeographic Realms and Terranes of the Northern Cordilleran Orogen in Western Canada 25
Figure 7.2_2 – Paleogeographic Realms and Terranes of the Northern Cordilleran Orogen in Western Canada 26
Figure 7.2_3 – Paleogeographic Reconstruction of Northwestern Canada for Late Triassic (top) and Middle Jurassic (bottom) 27
Figure 7.2_4 – Regional Geological Map of the Area Around the Tatogga Lake Project Area 28
Figure 7.2.5 – Volcano-stratigraphy of the Tatogga Lake Project Area With Associated Settings for Known Mineral Occurrences

Figure 7.2.6 – Lithostratigraphic Subdivisions of the Hazelton Group in the Vicinity of the Iskut River Area

Figure 7.2.7 – Location of the Stuhini-Hazelton Contact Indicated By The Red Line (Kyba, 2014)

Figure 7.3.1 – Map Showing Different Types of Copper Deposits in NW British Columbia

Figure 7.3.2 – Map Showing Different Types of Gold Deposits in NW British Columbia

Figure 7.4.1.1 – Geological Map of the Tatogga Lake Property

Figure 7.4.1.2 – Examples of Lithologies Encountered in Project Area

Figure 7.4.2.1 – Geological Map of the Northwest Tatogga Area

Figure 7.4.2.2 – Geological Map of the Saddle Target Area

Figure 7.4.3.1 – Geological Map for the Quash/Pass Gossan Area

Figure 8.2.1 – Transitional Meso-Epithermal Gold Stockwork Model Applied to the Brucejack Deposit

Figure 9.2.2.1 – Residual Magnetics over Project and Surrounding Areas

Figure 9.2.2.2 – Magnetic Susceptibility at 200m Depth and 430m Depth

Figure 9.2.3.1 – Conductivity Results over Project Area

Figure 9.2.3.2 – 3 D Conductivity Model for the Tatogga Lake Project Area

Figure 9.2.4.1 – Potassium Channel Radiometrics for the Surveyed Area of the Tatogga Lake Property

Figure 9.3.1.1 – Location of Anomalous Au Rock Sample Results Superimposed Over Saddle Area Geology

Figure 9.3.1.2 – Location of Anomalous Cu Rock Sample Results Superimposed Over Saddle Area Geology

Figure 9.3.2.1 – Au Assay Results of Soil Samples Superimposed Over Saddle Area Geology

Figure 9.3.2.2 – Location of Mineralised Rock Samples Within the Soil Sample Anomalies at the Saddle Target

Figure 9.3.2.3 – Soil Sample Anomalies at the Saddle Area in Relation to Geology and Geomorphology

Figure 9.3.2.4 – Cu Assay Results of Soil Samples Superimposed Over Saddle Area Geology

Figure 9.3.2.5 – As Assay Results of Soil Samples Superimposed Over Saddle Area Geology

Figure 9.4.2.1 – Soil Sample Cu Assay Results Superimposed Over the Quash/Pass Gossan Area Geology

Figure 9.4.2.2 – Soil Sample Au Assay Results Superimposed Over the Quash/Pass Gossan Area Geology

Figure 9.4.2.3 – Soil Sample Zn Assay Results Superimposed Over the Quash/Pass Gossan Area Geology

Figure 9.4.2.4 – Soil Sample Pb Assay Results Superimposed Over the Quash/Pass Gossan Area Geology

Figure 9.4.3.1 – Ground IP Survey Locations Over the Pass-Gossan and Quash Targets

Figure 9.4.3.2 – Chargeability Results Interpreted for Various Depth Slices

Figure 9.4.3.3 – Resistivity Results Interpreted for Various Depth Slices

Figure 9.4.3.4 – Three Dimensional Conductivity and Chargeability Models With Geology Overlay

Figure 9.6.1 – Soil Sample Au Assay Results Over the Valleyside Target
Figure 9.6.2 – Soil Sample As Assay Results Over the Valleyside Target
Figure 9.6.3 – Soil Sample Zn Assay Results Over the Valleyside Target
Figure 11.1.1 – Damage to Batch 13TL-NS-002
Figure 12.2.1 – Helicopter Traverse Over the Tatogga Lake Project Area
Figure 12.2.2 – Walked Traverses in the Saddle Target Area
Figure 12.2.3 – Location of Two Adjacent Sample Locations at the Saddle Area
Figure 12.2.4 – Location of Two Other Soil Samples at the Saddle Area
Figure 12.3.1 – Comparison of 2013 (Top) and 2014 (Bottom) Soil Sample Results at the Saddle Target
Figure 12.3.2 – Site Inspections of Soil and Rock Sampling (Top) and IP Survey (Bottom)
Figure 16.1.1 – The Tatogga Lake Property in Relation to Adjacent Projects
Figure 16.2.1 – Cu Assay Results of Soil Samples at the GJ Prospect
Figure 16.2.2 – Au Assay Results of Soil Samples at the GJ Prospect
Figure 16.3.1 – Cu Soil Sample Results On North ROK Project
Figure 16.3.2 – Au Soil Sample Results On North ROK Project
Figure 17.1.1 – Location of the Gambit and Ginsite Prospects
Figure 19.2.1 – Cu Mineralisation Located in NW Striking Structure
1 SUMMARY

The Tatogga Lake Gold/Copper Property ("the Property") is located in the Stikine region of north-western British Columbia, approximately 14km west of the Red Chris copper-gold mine and is just to the west of the paved Highway 37 and less than one kilometre west of the town of Iskut. In addition to the highway there is a railway roadbed, terminating approximately 30km east of the Property, and current construction activities will bring the national power grid to the boundary of the Property.

Access to the eastern boundary of the area is therefore straight-forward. The Property consists of 108 claims, of which 105 are contiguous and totalling almost 30,756 hectares, the right to which are predominantly expiring on 31 July 2018.

New Chris Minerals Ltd ("NCM") has secured an option agreement over the 108 claims, subject to a expenditure commitment (fulfilled), staged option payments and the issue of shares in NCM (or its successor) to the Optionors.

The Tatogga Lake Property is situated within the northern Cordilleran Orogen of western Canada, which comprises rocks that have been subjected to 1.8 billion years of tectonic history, from cratonisation of the Laurentian continental core to current subduction and transform motion off the west coast. The Property lies entirely within the island arc component of the Stikine Terrane of which the geological history is described as a series of five volcanic arcs of mid-Paleozoic to mid-Mesozoic volcanic age with two lulls in volcanism corresponding with tectonic uplift at the Triassic-Jurassic boundary (the Inkitian orogeny) and in the Lower Jurassic (the Nassian orogeny).

The Property is underlain by three (possibly four) of the five distinct successions of volcanic and volcanogenic sedimentary rocks:

- the Stuhini Group, which is dominated by clastic sedimentary rocks with lesser mafic volcanics and related epiclastics
- the Hazelton Group, characterised by mafic, intermediate and felsic volcanics and epiclastics with intervals of fossil-bearing black shales and limestones
- the Mount Edziza Volcanic Complex with alkaline basalts and lesser intermediate and felsic volcanic flows.

The Property is prospective for gold-copper porphyry deposits (supported by the close proximity of the Red Chris mine and three advanced gold-copper porphyry prospects), as well as related proximal or distal epithermal mineralisation and volcanogenic massive sulphide ("VMS") deposits, which may, or may not, be related to porphyry-style mineralising events. In this respect the large surficial extent of the Stuhini and Hazelton Groups present on the Property is relevant, as the Eskay Creek deposit is hosted in the Upper Hazelton, and Petivm Resources metallogenic model for their Brucejack gold deposit associates its emplacement to the Stuhini-Hazelton unconformity. This does not provide any assurance that a mineral deposit exists on the property.

The Property has undergone airborne magnetic and transient electromagnetic ("TEM"), and spectrometer surveys. While no obvious conductivity anomalies have been identified in the TEM
data, the magnetics and spectrometry data display considerable dynamic range across the Property and therefore provide valuable structural and compositional information.

An extensive soil and rock sampling and mapping programme has focused on two areas of interest, initially identified on the basis of gossanous exposures:

- The Saddle Gossan target area in the northeast of the Property
- The Quash / Pass Gossan target area in the centre of the Property

At the Saddle Target, geological mapping has encountered completely quartz-sericite-pyrite altered rock with numerous outcrops of gossanous material, some of which found to contain very high gold and copper values. The nature of mineralisation is not yet understood, but there are indications that this is related to relatively large (i.e. 10 cm - 30 cm) malachite + chalcopyrite-bearing quartz-carbonate veins that appear to be syn- or post-deformation and which are oriented roughly parallel to the dominant shearing directions measured across the whole area - approximately 215°/80° (dip, direction/dip).

Two particularly strong gold with associated copper anomalies have been defined (the “northern” and “southern”) which have the same trend as the shearing direction. The northern anomaly is a 300 m by 400 m anomaly of gold levels above 0.1 g/t Au (with four assays in excess of 1 g/t Au). The southern anomaly, approximately 800 m southwest from the first, is almost 1 km long and between 100 m to 300 m wide, with in general higher assay values than the northern anomaly. Associated with the anomalous gold are elevated copper values (on average >150 ppm), but there is a particularly striking 250 m by 100 m copper anomaly (>500 ppm with most results >1,000 ppm) in the area between the gold anomalies.

In the Quash/Pass Gossan two different targets have been identified through soil sampling, Cu/Au mineralisation and Zn-Pb-Ag mineralisation. Soil and rock samples define a 1,200 m by 200 m copper anomaly (150 ppm to >500 ppm), trending along the north-facing plateau edge to the northeast of the Pass Gossan occurrence, coincident with a monzonitic intrusion close to the mapped Stuhini/Hazelton contact. It corresponds with the anomalous Cu and Zn rock sample results. This anomaly is coincident with a soil gold anomaly of 20 ppb to 250 ppb, as well as elevated zinc and lead assays. The areal extent and tenor of the soil copper and gold anomalies associated with the intrusives at the Quash/Pass Gossan are equivalent to or greater than the anomalies associated with the two copper/gold porphyry deposits immediately adjacent to the Property – namely the GJ and North ROK deposits in project areas adjacent to Tatogga Lake. This does not provide any assurance that a mineral deposit exists on the property.

The anomaly around the Quash/Pass Gossan is well-defined and seems to be associated with the Stuhini-Hazelton contact. It constitutes an immediate drill target and drilling should be designed to delineate the true thickness, gain insights into the mineralising controls and test deeper continuation. Whereas historical trenching of the Quash/Pass Gossan has indicated sub-economic base metal mineralisation in iron-carbonate stringers, veinlets and fracture fillings with lesser dissemination, it warrants some drilling to verify whether grades improve with depth.

A helicopter overfly confirmed the presence of gossanous areas and spot checks of soil sample locations in the field were able to verify the correctness of recorded coordinates, that samples were taken from soil horizon, where present, and that a duplicate sample yielded similar assays.
At this stage the Saddle area seems to be the more prospective and should attract most attention.

It is recommended that in preparation to drilling a structural map be generated to place the encountered mineralisation and alteration in context of structural controls.

The scope and budget recommended for the next stage of exploration at the Property is set out in the Table 1_1.

<table>
<thead>
<tr>
<th>Target</th>
<th>Activity</th>
<th>Scope</th>
<th>Rate (C$/unit)</th>
<th>Amount (C$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saddle</td>
<td>Structural Mapping</td>
<td>One month</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>Drilling and Assaying - Initial</td>
<td>40 holes for 2,000m</td>
<td>150</td>
<td>300,000</td>
</tr>
<tr>
<td></td>
<td>Sub-total Saddle Area</td>
<td></td>
<td></td>
<td>315,000</td>
</tr>
<tr>
<td>Quash/ Central</td>
<td>Structural Mapping</td>
<td>One month</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>Drilling and Assaying - Initial</td>
<td>20 holes for 2,000m</td>
<td>150</td>
<td>300,000</td>
</tr>
<tr>
<td></td>
<td>Sub-total Quash/Central Area</td>
<td></td>
<td></td>
<td>315,000</td>
</tr>
<tr>
<td>Camp/Helicopter Support/Labour, Miscellaneous</td>
<td></td>
<td></td>
<td></td>
<td>450,000</td>
</tr>
<tr>
<td>Supervision and Reporting</td>
<td></td>
<td></td>
<td></td>
<td>75,000</td>
</tr>
<tr>
<td>Sub-total</td>
<td></td>
<td></td>
<td></td>
<td>1,155,000</td>
</tr>
<tr>
<td>Contingency – 20%</td>
<td></td>
<td></td>
<td></td>
<td>231,000</td>
</tr>
<tr>
<td>Total Budget</td>
<td></td>
<td></td>
<td></td>
<td>1,386,000</td>
</tr>
</tbody>
</table>

The total budget excludes any provision for corporate support services and activities.

Whereas the Saddle target and Quash/Pass Gossan targets can both be considered immediate drill targets, they stand to benefit from a dedicated structural mapping exercise to plan the location and azimuth/inclination of the various boreholes.

As the initial drilling programme should be directed to gain a better understanding of the nature and controls of the mineralisation, the holes should be relatively short and cover the full extent of the anomalies. At the Saddle anomaly, given the strong geochemical anomalies in the soil samples, the proposed average depth of 50 m of the holes is shorter than the proposed average depth of 100 m at the Quash/Pass Gossan.

NCM is in possession of a drill permit for the Tatogga Lake Property, indicating that there should be no delays related to such permitting.
INTRODUCTION

This Technical Report (“TR”) on the Tatogga Lake Gold/Copper Property (“the Property”) has been prepared for New Chris Minerals Ltd (“NCM”) in compliance with the disclosure requirements of NI 43-101.

The report has been drafted by the following authors:

- Mr C.A. Dekker (“the first author”) who was retained in 2013 for the purposes of preparing a NI43-101 report on the Property upon completion of the 2013 exploration programme. Mr Dekker’s familiarity with the Property is based on personal examinations of the Property carried out on a site visit from 2 to 3 October 2013, which included a helicopter overflight and visits to specific sample areas.

- Mr C.P. Smyth (“the second author”), who was retained by the owners of this project for the purpose of validating the work completed on the property in 2014. Mr Smyth’s familiarity with the Property is from numerous visits from 2011 until 2014. His site inspections in 2014 took place between the 29th of June and the 23rd of July of that year. No work was conducted on the property in 2015. During a 5-day visit to the property in July 2016 the second author was able to confirm that there had been no material changes to the property since 2014.

In preparing this report, the authors have relied on several technical reports detailing work on the Property since 1981. These reports, filed in support of assessment work requirements, are available in the BC Ministry of Energy, Mines and Petroleum Resources public files. Published and unpublished reports and maps also provided useful information. Citations for these and the various assessment reports are contained in the Reference section of this report.

This Technical Report has been prepared according to the specifications outlined in Form 43-101F1 for the Standards of Disclosure for Minerals Deposits, National Instrument 43-101. The report was prepared with the assistance of the technical staff at NCM.

The authors are Qualified Persons for the purpose of NI 43-101.

All technical measurements in this report are reported in metric units and Canadian Dollars, unless otherwise stated.
3 RELIANCE ON OTHER EXPERTS

The information contained in Section 4, Property Description and Location, regarding property ownership and claim status was provided to the authors by NCM. Both authors have reviewed British Columbia’s Mineral Titles Online website and confirmed, as of the date of this report, that the Optionor identified in Section 4 is the registered owner of the mineral claims as stated.
4 PROPERTY DESCRIPTION AND LOCATION

4.1 Location

The Property is located in the Stikine region of north-western British Columbia on the Klastline Plateau. Figure 4.1_1 shows that the property is situated within an area generally referred to as the “Golden Triangle” of British Columbia.

It is located approximately 14km west of the Red Chris copper-gold mine and is just to the west of Highway 37 and less than one kilometre west of the town of Iskut.

4.2 Mineral Rights

The Property consists of 105 contiguous claims totalling 30,755.79 hectares, as well as three small satellite claims (see Figure 4.2_1 for outlines of the various claim blocks).
Table 4.2_1 provides details on the various claims that constitute the project area.
<table>
<thead>
<tr>
<th>Tenure No.</th>
<th>Claim Name</th>
<th>Issue Date</th>
<th>Expiry Date</th>
<th>Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>593806</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>593807</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>593814</td>
<td>CHRIS 2</td>
<td>4 November '08</td>
<td>31 July '18</td>
<td>17.26</td>
</tr>
<tr>
<td>593824</td>
<td>CHRIS 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>593830</td>
<td>CHRIS 3A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>593852</td>
<td>CHRIS 3A</td>
<td>6 November '08</td>
<td>31 July '18</td>
<td>17.28</td>
</tr>
<tr>
<td>59918</td>
<td>BOND 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>598669</td>
<td>RED CHRIS 2 ("Ginside")</td>
<td>4 February '09</td>
<td>31 January '24</td>
<td>415.34</td>
</tr>
<tr>
<td>598683</td>
<td>RED CHRIS ("Gambit")</td>
<td>4 February '09</td>
<td>31 January '18</td>
<td>379.34</td>
</tr>
<tr>
<td>598779</td>
<td>NEW AXE 2</td>
<td>6 February '09</td>
<td>31 July '18</td>
<td>328.21</td>
</tr>
<tr>
<td>598780</td>
<td>NEW AXE 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>598781</td>
<td>NEW AXE 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>598783</td>
<td>NEW AXE 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>598784</td>
<td>NEW AXE 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>599155</td>
<td>PEANUT</td>
<td>11 February '09</td>
<td></td>
<td>17.31</td>
</tr>
<tr>
<td>599156</td>
<td></td>
<td>11 February '09</td>
<td></td>
<td>17.30</td>
</tr>
<tr>
<td>599717</td>
<td></td>
<td>20 February '09</td>
<td></td>
<td>432.30</td>
</tr>
<tr>
<td>602144</td>
<td>VIOLET EAST</td>
<td>05 April '09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>666204</td>
<td>RED CHRIS 99</td>
<td>7 November '09</td>
<td></td>
<td>103.59</td>
</tr>
<tr>
<td>666205</td>
<td>RED CHRIS 100</td>
<td></td>
<td></td>
<td>397.09</td>
</tr>
<tr>
<td>667863</td>
<td>RED CHRIS WEST 1</td>
<td></td>
<td></td>
<td>431.37</td>
</tr>
<tr>
<td>667864</td>
<td>RED CHRIS WEST 2</td>
<td></td>
<td></td>
<td>431.36</td>
</tr>
<tr>
<td>667865</td>
<td>RED CHRIS WEST 3</td>
<td></td>
<td></td>
<td>431.32</td>
</tr>
<tr>
<td>667866</td>
<td>RED CHRIS WEST 4</td>
<td></td>
<td></td>
<td>431.60</td>
</tr>
<tr>
<td>667883</td>
<td>RED CHRIS WEST 5</td>
<td></td>
<td></td>
<td>379.40</td>
</tr>
<tr>
<td>667884</td>
<td>RED CHRIS WEST 6</td>
<td></td>
<td></td>
<td>431.12</td>
</tr>
<tr>
<td>667885</td>
<td>RED CHRIS WEST 7</td>
<td></td>
<td></td>
<td>431.07</td>
</tr>
<tr>
<td>667886</td>
<td>RED CHRIS WEST 8</td>
<td></td>
<td></td>
<td>430.88</td>
</tr>
<tr>
<td>667903</td>
<td>RED CHRIS WEST 9</td>
<td></td>
<td></td>
<td>430.87</td>
</tr>
<tr>
<td>667904</td>
<td>RED CHRIS WEST 10</td>
<td>31 July '18</td>
<td></td>
<td>430.85</td>
</tr>
<tr>
<td>667905</td>
<td>RED CHRIS WEST 11</td>
<td>11 November '09</td>
<td></td>
<td>413.59</td>
</tr>
<tr>
<td>667906</td>
<td>RED CHRIS WEST 12</td>
<td></td>
<td></td>
<td>431.03</td>
</tr>
<tr>
<td>667923</td>
<td>RED CHRIS WEST 13</td>
<td></td>
<td></td>
<td>431.27</td>
</tr>
<tr>
<td>667924</td>
<td>RED CHRIS WEST 14</td>
<td></td>
<td></td>
<td>431.50</td>
</tr>
<tr>
<td>667925</td>
<td>RED CHRIS WEST 15</td>
<td></td>
<td></td>
<td>431.75</td>
</tr>
<tr>
<td>667926</td>
<td>RED CHRIS WEST 16</td>
<td></td>
<td></td>
<td>431.95</td>
</tr>
<tr>
<td>667943</td>
<td>RED CHRIS WEST 17</td>
<td></td>
<td></td>
<td>431.95</td>
</tr>
<tr>
<td>667944</td>
<td>RED CHRIS WEST 18</td>
<td></td>
<td></td>
<td>432.14</td>
</tr>
<tr>
<td>667945</td>
<td>RED CHRIS WEST 19</td>
<td></td>
<td></td>
<td>432.42</td>
</tr>
<tr>
<td>667946</td>
<td>RED CHRIS WEST 20</td>
<td></td>
<td></td>
<td>398.10</td>
</tr>
<tr>
<td>667963</td>
<td>RED CHRIS WEST 21</td>
<td></td>
<td></td>
<td>430.89</td>
</tr>
<tr>
<td>667964</td>
<td>RED CHRIS WEST 22</td>
<td></td>
<td></td>
<td>431.15</td>
</tr>
<tr>
<td>667965</td>
<td>RED CHRIS WEST 23</td>
<td></td>
<td></td>
<td>431.41</td>
</tr>
<tr>
<td>667967</td>
<td>RED CHRIS WEST 24</td>
<td></td>
<td></td>
<td>103.74</td>
</tr>
<tr>
<td>730343</td>
<td>PEANUT 1A</td>
<td>18 March '10</td>
<td></td>
<td>121.12</td>
</tr>
</tbody>
</table>
Table 4.2.1
New Chris Minerals Limited
Details of Various Claims that Constitute the Tatogga Lake Project Area

<table>
<thead>
<tr>
<th>Claim Number</th>
<th>Claim Name</th>
<th>Date</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>743123</td>
<td>NEW PASS GOSSAN</td>
<td>8 April '10</td>
<td>431.78</td>
</tr>
<tr>
<td>743124</td>
<td>743125</td>
<td></td>
<td>432.05</td>
</tr>
<tr>
<td>743162</td>
<td>743163</td>
<td></td>
<td>51.83</td>
</tr>
<tr>
<td>743163</td>
<td>743222</td>
<td></td>
<td>17.29</td>
</tr>
<tr>
<td>743222</td>
<td>743242</td>
<td></td>
<td>259.01</td>
</tr>
<tr>
<td>743242</td>
<td>743263</td>
<td></td>
<td>34.57</td>
</tr>
<tr>
<td>743263</td>
<td>743282</td>
<td></td>
<td>190.00</td>
</tr>
<tr>
<td>743282</td>
<td>743283</td>
<td></td>
<td>103.67</td>
</tr>
<tr>
<td>743283</td>
<td>431.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>743302</td>
<td>RED CHRIS 33</td>
<td>18 October '10</td>
<td>51.85</td>
</tr>
<tr>
<td>743322</td>
<td>743342</td>
<td>12 December '10</td>
<td>430.35</td>
</tr>
<tr>
<td>743342</td>
<td>743362</td>
<td>12 December '10</td>
<td>17.28</td>
</tr>
<tr>
<td>743362</td>
<td>743363</td>
<td>12 December '10</td>
<td>17.29</td>
</tr>
<tr>
<td>743382</td>
<td>743383</td>
<td>12 December '10</td>
<td>17.29</td>
</tr>
<tr>
<td>743422</td>
<td>RED CHRIS WEST 34</td>
<td>18 October '10</td>
<td>431.99</td>
</tr>
<tr>
<td>836165</td>
<td>RED CHRIS CONNECTOR</td>
<td>18 October '10</td>
<td>51.85</td>
</tr>
<tr>
<td>840669</td>
<td>NORTH RED CHRIS 2</td>
<td>12 December '10</td>
<td>430.35</td>
</tr>
<tr>
<td>840676</td>
<td>NORTH RED CHRIS 1</td>
<td>12 December '10</td>
<td>430.46</td>
</tr>
<tr>
<td>840678</td>
<td>NORTH RED CHRIS 3</td>
<td>12 December '10</td>
<td>413.03</td>
</tr>
<tr>
<td>840679</td>
<td>NORTH RED CHRIS 4</td>
<td>12 December '10</td>
<td>430.20</td>
</tr>
<tr>
<td>840680</td>
<td>NORTH RED CHRIS 5</td>
<td>12 December '10</td>
<td>103.23</td>
</tr>
<tr>
<td>841209</td>
<td></td>
<td></td>
<td>430.60</td>
</tr>
<tr>
<td>841212</td>
<td></td>
<td></td>
<td>430.67</td>
</tr>
<tr>
<td>841214</td>
<td>NORTH RED CHRIS 8</td>
<td></td>
<td>430.62</td>
</tr>
<tr>
<td>841217</td>
<td>NORTH RED CHRIS 10</td>
<td></td>
<td>430.37</td>
</tr>
<tr>
<td>841218</td>
<td>NEW RED CHRIS 7</td>
<td></td>
<td>430.61</td>
</tr>
<tr>
<td>841219</td>
<td></td>
<td></td>
<td>258.24</td>
</tr>
<tr>
<td>841222</td>
<td></td>
<td></td>
<td>172.11</td>
</tr>
<tr>
<td>841224</td>
<td>NORTH RED CHRIS 12</td>
<td>19 December '10</td>
<td>430.61</td>
</tr>
<tr>
<td>841225</td>
<td>NORTH RED CHRIS 11</td>
<td>19 December '10</td>
<td>413.03</td>
</tr>
<tr>
<td>841226</td>
<td>NEW RED CHRIS 13</td>
<td>19 December '10</td>
<td>378.76</td>
</tr>
<tr>
<td>841227</td>
<td>NEW RED CHRIS 14</td>
<td>19 December '10</td>
<td>430.51</td>
</tr>
<tr>
<td>841229</td>
<td>NORTH RED CHRIS 15</td>
<td>19 December '10</td>
<td>430.29</td>
</tr>
<tr>
<td>841231</td>
<td>NORTH RED CHRIS 16</td>
<td>19 December '10</td>
<td>430.56</td>
</tr>
<tr>
<td>841232</td>
<td>NEW RED CHRIS 17</td>
<td>19 December '10</td>
<td>430.32</td>
</tr>
<tr>
<td>841233</td>
<td>NEW RED CHRIS 18</td>
<td>19 December '10</td>
<td>430.43</td>
</tr>
<tr>
<td>841234</td>
<td>NEW RED CHRIS 19</td>
<td>19 December '10</td>
<td>17.21</td>
</tr>
<tr>
<td>841235</td>
<td>NORTH RED CHRIS 20</td>
<td>19 December '10</td>
<td>361.40</td>
</tr>
<tr>
<td>841236</td>
<td>NORTH RED CHRIS 21</td>
<td>19 December '10</td>
<td>430.41</td>
</tr>
<tr>
<td>843538</td>
<td>WEST GIN 3</td>
<td>19 January '11</td>
<td>121.01</td>
</tr>
<tr>
<td>843543</td>
<td>WEST GIN 4</td>
<td>19 January '11</td>
<td>415.01</td>
</tr>
<tr>
<td>843550</td>
<td>WEST GIN 5</td>
<td>19 January '11</td>
<td>415.13</td>
</tr>
<tr>
<td>843551</td>
<td>WEST 1</td>
<td>19 January '11</td>
<td>17.29</td>
</tr>
<tr>
<td>843554</td>
<td>WEST GIN 6</td>
<td>19 January '11</td>
<td>173.03</td>
</tr>
<tr>
<td>843556</td>
<td>WEST GIN 2</td>
<td>19 January '11</td>
<td>34.58</td>
</tr>
<tr>
<td>844004</td>
<td>NORTH RED CHRIS A</td>
<td>22 January '11/</td>
<td>51.66</td>
</tr>
<tr>
<td>844005</td>
<td>NORTH RED CHRIS B</td>
<td>22 January '11/</td>
<td>68.92</td>
</tr>
</tbody>
</table>
Table 4.2.1
New Chris Minerals Limited
Details of Various Claims that Constitute the Tatogga Lake Project Area

<table>
<thead>
<tr>
<th>Claim ID</th>
<th>Claim Name</th>
<th>Date</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>844007</td>
<td>NORTH RED CHRIS C</td>
<td>25 June '11</td>
<td>396.19</td>
</tr>
<tr>
<td>859087</td>
<td>RED CHRIS WEST 25</td>
<td>25 June '11</td>
<td>345.39</td>
</tr>
<tr>
<td>859087</td>
<td>RED CHRIS WEST 26</td>
<td>25 June '11</td>
<td>69.07</td>
</tr>
<tr>
<td>867849</td>
<td>LITTLE RED CHRIS 1A</td>
<td>25 July '11</td>
<td>17.28</td>
</tr>
<tr>
<td>918849</td>
<td>WEST GIN 1</td>
<td>19 October '11</td>
<td>432.84</td>
</tr>
<tr>
<td>1012474</td>
<td>RED CHRIS WEST 27</td>
<td>1 September '12</td>
<td>294.60</td>
</tr>
<tr>
<td>1012477</td>
<td>RED CHRIS WEST 28</td>
<td>1 September '12</td>
<td>329.45</td>
</tr>
<tr>
<td>1013105</td>
<td>WEST GIN 7</td>
<td>22 September '12</td>
<td>69.15</td>
</tr>
<tr>
<td>1015797</td>
<td>RED CHRIS WEST 29</td>
<td>8 January '13</td>
<td>467.71</td>
</tr>
<tr>
<td>1015802</td>
<td>RED CHRIS WEST 30</td>
<td>8 January '13</td>
<td>398.57</td>
</tr>
<tr>
<td>1016142</td>
<td>RED CHRIS WEST 32</td>
<td>19 January '13</td>
<td>190.66</td>
</tr>
<tr>
<td>1016147</td>
<td>RED CHRIS WEST 31</td>
<td>31 July '18</td>
<td>17.33</td>
</tr>
<tr>
<td>1016150</td>
<td>RED CHRIS WEST 31</td>
<td>31 July '18</td>
<td>225.34</td>
</tr>
<tr>
<td>1016235</td>
<td>RED CHRIS WEST 33</td>
<td>31 July '18</td>
<td>138.58</td>
</tr>
<tr>
<td>1016236</td>
<td>RED CHRIS WEST 34</td>
<td>31 July '18</td>
<td>103.98</td>
</tr>
<tr>
<td>1027870</td>
<td>RED CHRIS WEST 29</td>
<td>28 April 2014</td>
<td>693.92</td>
</tr>
</tbody>
</table>

4.3 Ownership

NCM holds a 100% interest in the 108 mineral rights comprising the Tatogga Property listed in Table 4.2.1, subject to the terms of an underlying property Option agreement dated June 13, 2011 and amended March 25, 2014 and June 10, 2016 with, collectively, Richard Billingsley, Gaye Richards and 0886260 B.C. Ltd. (“the Optionors”). Separately, NCM also holds a 100% interest in a second B.C. mineral property, New Nanik, which is not the subject of this Technical Report, but is also encompassed by the “Proposed Manera Capital Corp. Qualifying Transaction”, discussed below.

Key terms of the Tatogga Property Option Agreement as amended March 25, 2014 and June 10, 2016 include:

1. **Achieve listing on the TSXV**: NCM was to achieve a listing of its shares on the TSX Venture Exchange.

2. **Cash Payments**: NCM must make staged cash payments to the Optionors as follows:
 - $25,000 on signing (paid);
 - $50,000 within five days of the listing date;
 - $50,000 on the first anniversary of the listing;
 - $100,000 on the second anniversary;
 - $100,000 on the third anniversary; and
 - $100,000 on the fourth anniversary.

3. **Work Commitments**: NCM was required to carry out $500,000 in allowable exploration work on the Property by December 31, 2013. This requirement has been fulfilled.
4. **Share Payments**: NCM was to make a single issuance to the Optionors for the Tatogga Property of 8,260,000 common shares on listing.

5. **NSR**: Payment of a 2% Net Smelter Returns ("NSR") royalty in the event production is achieved from the Property. NCM may buy back 1% of the NSR for $1,500,000 within five years from the date upon which commercial production begins.

4.4 Proposed Manera Capital Corporation Qualifying Transaction

On June 30, 2016, Manera Capital Corp. ("Manera") (TSXV: MEA.P) entered into an agreement to acquire New Chris Minerals Ltd. (the "NCM Agreement"). Pursuant to the NCM Agreement, Manera has agreed to acquire 100% of the issued and outstanding shares of NCM, making NCM a wholly-owned subsidiary of Manera, and to exercise NCM’s property options for consideration (aggregating both pre-existing NCM obligations to the property Optionors and Manera’s obligations to New Chris shareholders) consisting of 36,351,948 common shares of Manera and staged cash payments to be made over four years totalling $1,175,000, plus the 2% net smelter return royalty potentially payable in future to the property Optionors (together, the “Purchase Price”) (the “NCM Acquisition”).

In connection with the NCM Acquisition, Manera intends to carry out certain concurrent transactions, including the acquisition of four early-stage properties from C.J. Greig Holdings Ltd. (the “Greig Acquisition”) as well as a financing for gross proceeds in the range of $1.5 to $2.5 million dollars (the “Manera Financing”). Following the concurrent closing of the New Chris Acquisition, the Greig Acquisition and the Manera Financing (collectively, “the Closing”), the resulting entity proposes to change its name to “GT Gold Corp.”

Subject to Exchange acceptance, the completion of the Manera Financing, the completion of the Greig Acquisition (as described above) and the satisfaction of other conditions contained in the NCM Agreement, Manera will:

1. **Issue on Closing** to the New Chris shareholders 26,351,948 Manera common shares at a deemed price of C$0.10 per share, in satisfaction of the share issuance portion of the Purchase Price;

2. **As further consideration** make cash payments to the New Chris shareholders of (a) a non-refundable cash deposit of C$10,000 on signing of the NCM Agreement (conditional on the acceptance of the Exchange), (b) C$150,000 on Closing, (c) C$200,000 on the 12 month anniversary thereof, and (d) a final payment of C$240,000 on the 24 month anniversary thereof, for an aggregate total of C$600,000, in satisfaction of the cash payment portion of the Purchase Price;

3. **Issue on Closing** to the underlying property Optionors 10,000,000 Manera common shares at a deemed price of C$0.10 per share in satisfaction of the share issuance portion of the property option agreements presently held by NCM (8,260,000 of these shares relate to the Tatogga property, the remainder to the New Nanik property), which will result in New Chris (by then a wholly owned subsidiary of Manera) acquiring a 100% interest in both properties;

4. **As further consideration** to the property Optionors, make cash payments over four years totalling in aggregate C$575,000 in satisfaction of the remaining cash payments portion of the property option agreements ($400,000 of this amount relates to the Tatogga property, the remainder to the New Nanik property);
5. Issue on Closing to C.J. Greig Holdings Ltd. 2,000,000 Manera common shares at a deemed price of C$0.10 per share in satisfaction of the share issuance portion of the Greig Acquisition agreement; and

As further consideration to C.J. Greig Holdings Ltd., make cash payments over two years totaling in aggregate C$46,000 in satisfaction of the cash payment portion of the Greig Acquisition agreement.

None of the agreements and properties discussed above pertain to surface rights.

There are no known encumbrances or environmental liabilities to which the Tatogga property is subject.

4.5 Permitting and Work Requirements

The British Columbian mineral tenure system allows individuals and corporations to acquire mineral rights and conduct exploration for minerals situated on crown and private land. Before registering mineral claims electronically, the company or individual is required to register with the government and pay a fee to obtain a Free Miner Certificate. Mineral rights are acquired by registering a mineral claim to land through an online staking system.

The value of exploration and development required to maintain a mineral claim for one year is at least:

- $5 per hectare for each of the first and second anniversary years $4 per hectare during each of the first, second and third anniversary years
- $10 per hectare for each of the third and fourth anniversary years $8 per hectare for each subsequent anniversary year
- $15 per hectare for each of the fifth and sixth anniversary years
- $20 per hectare for each subsequent anniversary year.

Permitting for mining in British Columbia is a transparent process summarised in the graphic produced by the Mineral Titles Branch of the British Columbia Ministry of Energy, Mines and Natural Gas, and reproduced in Figure 4.4_1.
NCM is in possession of a drill permit for the Tatogga Lake property (Figure 4.4_2). No further permits are required to conduct the work proposed in this report for the property.
NCM Current Permit for Drilling at Tatogga Lake

October 10, 2013

Clinton Smyth
New Chris Minerals Ltd
Via email: csmyth@newchris.com

Re: Mines Act Permit MX-1-016
Approval #: 13-1050758-1010
Property: Tatogga Lake

Enclosed is your Mines Act permit which authorizes mineral exploration activities as detailed in the Notice of Work and Reclamation Program dated June 16, 2012, for a five (5) year term ending on March 31st, 2018. Please ensure that you review and fully understand the conditions of the attached permit. The Notice of Work and Reclamation Program forms part of the permit and you are reminded that you may not depart from the permitted program without written authorization. Attached as well, is a Free Use Permit that will allow for up to cutting of 50 m³ of incidental timber.

A copy of the permit must be maintained on site and exploration activities conducted in accordance with permit conditions. All persons who are carrying out activities under this permit must be familiar with the permitted work program, permit conditions, and emergency response plan.

Enclosed is an executed copy of the Safeguarding Agreement dated October 7, 2012, covering securities described as RBC - GIC No. 065201648-1, in the amount of Twenty Thousand Dollars ($20,000). The amount of your security deposit may be adjusted on the basis of reclamation performance, field inspections by this Ministry, and on reports which may be requested. By copy of this letter, we are forwarding an executed copy of the Safeguarding Agreement to the RBC – Royal Bank.

Under Part 1.7.1 of the Health, Safety and Reclamation Code for Mines in B.C. (the Code), the manager is required to report fatalities, accidents and dangerous occurrences to the local mine inspector. A reporting form for these incidents is attached for your use.

This Mines Act permit applies only to the requirements under the Mines Act and Health, Safety and Reclamation Code for Mines in British Columbia (Code). Other legislation may be applicable to the operation and you (the Permittee) may be required to obtain approvals or permits under that legislation.

For each year of the multi-year work approval, an Annual Summary of Exploration Activities (ASEA) and MVA Annual Update of proposed work activity must be filed no later than March 31st. The applicable forms can be found at http://www.ener.gov.bc.ca/Mining/Permitting-Reclamation/Pages/AnnualReporting.aspx. Until this permit is closed, you must file this information by March 31 of each year. Failure to comply with the Code may impact your ability to obtain future permits, work authorizations and may impact your ability to complete the full multi-year work program.

Please provide email notification to: MMD.Smithers@gov.bc.ca at least 7 days prior to commencing and ceasing work.

Sincerely,

Bruce Graff, P. Eng.
Contract Permitting - Inspector of Mines

Encl. Permit/NCW/TLIP/Accident/IO

CC: Reclamation Section
RBC Royal Bank, 685 West Hastings St, Vancouver, BC V6B 1N9

Ministry of Energy and Mines
Mailing Address:
Bag 5000
2nd Flr - 3726 Alfred Ave
Smithers, BC V0J 2N0
Telephone: (250) 847 7363
Facsimile: (250) 847 7603
The Tahltan Nation is the only First Nation with known historical rights in the region of the property. The Nation has been fully informed of New Chris Minerals exploration activities on its properties, and has registered no objections to these. During the five years of New Chris Minerals work on its properties, the Tahltan Nation has approved the development of the Red Chris mine, approximately 20 kilometers to the south west of the Tatogga property.

4.6 New Chris Minerals Expenditures on the Property

Table 4.5_1 lists the exploration expenditures incurred on the property within the period 2011 to the date of this report, as recorded in Assessment Reports filed with, and accepted by, the Ministry of Mines of British Columbia.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Breakdown of Expenditure (C$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessment Report</td>
</tr>
<tr>
<td>2011</td>
<td>32,875</td>
</tr>
<tr>
<td>2012</td>
<td>33,764</td>
</tr>
<tr>
<td>2013</td>
<td>34,435</td>
</tr>
<tr>
<td>2014</td>
<td>35,329</td>
</tr>
<tr>
<td>2015</td>
<td>25,000</td>
</tr>
<tr>
<td>2016</td>
<td>26,000</td>
</tr>
<tr>
<td>Total – 2011-2016</td>
<td>136,403</td>
</tr>
</tbody>
</table>
5 ACCESS, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOLOGY

5.1 Access

Access to the area is gained via Highway 37, commonly referred to as the Stewart-Cassiar Highway, approximately 500 km north from Smithers, B.C. (approximately 6 hours driving) or by taking a scheduled air flight from Smithers to Dease Lake, approximately 80 km north of the claims. The nearest Helicopter base is in Dease Lake. During the 2013 and 2014 seasons helicopters were stationed in Iskut to provide support to the projects active within the area.

5.2 Climate

The climate in the area is northern temperate with moderate summers and cold winters. Typical daytime temperature ranges are from the mid to upper 20°’s Celsius in summer and mid to lower negative 20°’s Celsius in winter. Precipitation averages about 100cm per year. Thick accumulations of snow are common in winter.

Fieldwork can normally start at lower elevations in early June and at the upper elevations by July. Cold weather, winds and snow squalls make field work difficult at the upper elevations past September, although drilling programmes have continued well into November at the nearby Red Chris property where weather conditions are similar. North facing slopes maintain snow packs until the end of August with some cirques maintaining permanent snow packs and glaciers.

The nearest weather station providing data is in Dease Lake. Data from this weather station are summarised in Table 5.2_1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Season</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Summer</td>
<td>Fall</td>
</tr>
<tr>
<td>Average Temperature</td>
<td>°C</td>
<td>11.7</td>
<td>4.2</td>
</tr>
<tr>
<td>Average Daily High</td>
<td>°C</td>
<td>18.4</td>
<td>9.2</td>
</tr>
<tr>
<td>Average Daily Low</td>
<td>°C</td>
<td>5.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>Average Total Rainfall</td>
<td>mm</td>
<td>163.1</td>
<td>68.2</td>
</tr>
<tr>
<td>Average Total Snowfall</td>
<td>cm</td>
<td>0.2</td>
<td>21.1</td>
</tr>
<tr>
<td>Average Snow Depth</td>
<td>cm</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>Total Average Precipitation</td>
<td>mm</td>
<td>163.2</td>
<td>86.5</td>
</tr>
</tbody>
</table>

5.3 Local Resources

The nearest full-service community is Dease Lake, approximately 70km to the north of the Property. Fuel, air transport (fixed wing and helicopter) and groceries are available in Dease Lake.

Accommodation, meals, telephone and fax are available at Tatogga Lake Resort, 15km north-east of the project camp site, or at Eddontenajon, 2km south of Iskut Village and 25km north-east.
from the camp. At both localities there are a helicopter staging area, covered storage and local expediting services to assist in both receiving and shipping of supplies and samples to and from Smithers. Gasoline and diesel fuel are available at Tatogga Lake Resort and Iskut.

A nursing station, grocery store, school and the Iskut First Nation Band office are located in Iskut. Dease Lake has a hospital, hardware and grocery store, RCMP detachment, Government of BC Forestry office, nursing station, school, Tahltan Band office, gas station, hotel, airport and seasonal restaurant.

Both unskilled labourers and skilled personnel trained at the old Eskay Creek, Snip and Golden Bear mines are available at nearby Iskut Village, Dease Lake and Telegraph Creek.

5.4 Infrastructure

There are many mining and exploration-related projects in Northwest British Columbia (Figure 5.4_1) for which supporting infrastructure has been, and continues to be, developed.

![Figure 5.4_1](image)

A daily freight service exists between Iskut and Smithers (375km southeast of the Property) and most activities, except helicopter logistics, are being sourced from this town.

In addition to the Highway 37 access route to the area, a railway roadbed, including many of the required bridges, was constructed into the area almost 30 years ago. It terminates approximately 30km east of the Property. This was part of the B.C. Rail plan to extend track to Dease Lake. There are currently three enterprises studying the feasibility of constructing a railway line on this roadbed to serve coal and anthracite mines planned in the Klappan area, such as Arctos in Figure 5.4_1.
The Northwest Transmission Line ("NTL") is a 344km, 287 kV transmission constructed between the Skeena Substation (near Terrace) and a new substation near Bob Quinn Lake (Figure 5.4_2).

![Figure 5.4_2 The Northwest Transmission Line](image)

A subsidiary of Imperial Metals, the owner of the Red Chris Mine, has completed a 93km extension (Iskut Extension) from Bob Quinn to Tatogga to provide power for the mine (Figure 5.4_3). This effectively brings the provincial power grid to the boundary of the Tatogga Lake Property.
5.5 Physiography

The Tatogga Lake Project is located within the very rugged Stikine region of north-west British Columbia. The topography on the claims is characterised by a relatively flat to rolling hills atop the plateaus and extremely steep slopes in deeply incised, east-west oriented valleys. Elevations range from 823m above mean sea level ("amsl") to 2,103m amsl.

Vegetation consists primarily of poplar, alder, spruce and fir at the lower elevations but the plateaus are almost completely above the tree-line (approximately 1,370m amsl) with plant-life dominated by subalpine scrub and lichen-covered rock (Olfert, 1991).
6 HISTORY

6.1 Summary

Figure 6.1_1 shows the mineral occurrences identified by historical exploration activities on and around the Tatogga Lake Property with the current ownership of surrounding claims identified in various colours.

The Tatogga Lake Project area has seen sporadic exploration over the years, the earliest useful documentation of which dates from 1990. Table 6.1_1 provides a timeline of exploration activity reported on the project area.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>Totem Minerals Ltd</td>
<td>Northern Edziza Volcanics</td>
<td>Airborne Mag.</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>1960</td>
<td>Southwest Potash Corp</td>
<td>Wolf Minfile Showing</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Report 21156</td>
</tr>
<tr>
<td>1960</td>
<td>Nuspar Resources Ltd</td>
<td>Art Minfile Showing</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Report 21156</td>
</tr>
<tr>
<td>1964</td>
<td>Conwest Exploration</td>
<td>GJ, QC and Horn Minfile Showing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Report 21156</td>
</tr>
<tr>
<td>1989</td>
<td>Teck Corp.</td>
<td>Horn East, Quash</td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19337</td>
</tr>
<tr>
<td>1989</td>
<td>Noranda Exploration</td>
<td>Quash</td>
<td></td>
<td>8</td>
<td>36</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19444</td>
</tr>
<tr>
<td>1989</td>
<td>Ascot Resources</td>
<td>Bond, Beauchamp</td>
<td>Yes</td>
<td>97</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19802</td>
</tr>
<tr>
<td>1990</td>
<td>Noranda</td>
<td>Quash, Petal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20616</td>
</tr>
<tr>
<td>1990</td>
<td>Ascot Resources</td>
<td>Pass Gossan, GoNo, Curt, Petal-Violet</td>
<td>7 at Violet</td>
<td>1</td>
<td>150.88</td>
<td>136</td>
<td>137</td>
<td>236</td>
<td></td>
<td></td>
<td>20715</td>
</tr>
<tr>
<td>1990</td>
<td>Chris W. Graff</td>
<td>Quash</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20760</td>
</tr>
<tr>
<td>1990</td>
<td>Ascot</td>
<td>Bond, Beauchamp</td>
<td>IP, Ground Mag.</td>
<td>425</td>
<td>9</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21128</td>
</tr>
<tr>
<td>1991</td>
<td>Ascot</td>
<td>GoNo, Quash, Seester</td>
<td>IP, Ground Mag.</td>
<td>912</td>
<td>8</td>
<td>245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21156</td>
</tr>
<tr>
<td>1991</td>
<td>Noranda</td>
<td>Quash</td>
<td>Grnd Mag. (39km), VLF-EM (19km)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21259</td>
</tr>
<tr>
<td>1991</td>
<td>Ascot</td>
<td>Horn</td>
<td></td>
<td>61</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21337</td>
</tr>
<tr>
<td>1991</td>
<td>Brooklyn Resources</td>
<td>Saddle Gossan</td>
<td>Yes</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21617</td>
</tr>
<tr>
<td>1991</td>
<td>Yuma Gold Mines Inc.</td>
<td>Northern Edziza Volcanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21679</td>
</tr>
<tr>
<td>1991</td>
<td>Noranda</td>
<td>Quash</td>
<td>IP (6.9km)</td>
<td>Yes</td>
<td>2</td>
<td>203</td>
<td>1</td>
<td>98</td>
<td></td>
<td></td>
<td>21832</td>
</tr>
<tr>
<td>1991</td>
<td>Ascot</td>
<td>Central GoNo, Violet-Petal</td>
<td>IP (5.6km), Ground Mag. (31km)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>2,377</td>
<td>75</td>
<td>460</td>
<td></td>
<td>21858</td>
</tr>
<tr>
<td>2010</td>
<td>Solitaire Minerals Ltd</td>
<td>Bond, Beauchamp</td>
<td>Yes</td>
<td>64</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32021</td>
</tr>
<tr>
<td>2011</td>
<td>New Chris Minerals</td>
<td>Whole Project Area</td>
<td>Airborne Mag and TEM (760km)</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32875</td>
</tr>
<tr>
<td>2012</td>
<td>New Chris Minerals</td>
<td>Quash, Central, GoNo, Fossil, Violet-Petal</td>
<td>Airborne Mag and TEM (1,619km)</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33764</td>
</tr>
<tr>
<td>2013</td>
<td>New Chris Minerals</td>
<td>Quash/Pass Gossan; Saddle</td>
<td>Yes</td>
<td>2,122</td>
<td>154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34435</td>
</tr>
<tr>
<td>2014</td>
<td>New Chris Minerals</td>
<td>Quash/Pass Gossan; Saddle</td>
<td>IP (14km)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35329</td>
</tr>
</tbody>
</table>
6.2 Historical Exploration Activities

Being a large collection of mineral licences, the Tatogga Property had no single previous owner prior to its staking by the optionor over the period 2009 to 2010. The most significant owners of the constituent licences now part of the Property are listed in Table 6.1_1, and the most significant of those listed, and the periods of their contribution to exploration of the Property are discussed below.

The first significant work known in the Tatogga Lake area was in 1960 when Southwest Potash Corporation found the chalcopyrite-pyrite bearing veining of the Wolf occurrence, immediately to the west of the Property (Figure 6.1.1). Regional evaluation of the Klastline plateau completed in 1964 by Conwest Exploration Ltd identified a number of porphyry copper-gold and precious metal-bearing vein and shear targets including the GJ, QC and Horn occurrences, also immediately to the west of the Property (Figure 6.1.1).

Following these initial discoveries the Tatogga Lake area remained relatively inactive until 1988 when a regional stream silt sampling programme was completed in the area by the Geological Survey of Canada ("GSC"). In 1989, on the basis of these silts, Ascot Resources Ltd. contracted Keewatin Engineering Inc. to carry out an exploration programme including stream sediment sampling and limited prospecting over an area overlapping most of the Tatogga Lake Property. This programme identified a number of zones on the Property with anomalous Cu-Au±Ag, Au±Ag and Cu-Pb-Zn-Ag.

In 1990 and 1991 this work was followed up with small ground magnetic and Induced Polarisation ("IP") geophysical surveys, prospecting, geological mapping, and extensive contour soil and rock geochemical sampling. The exploration was focused in nine primary zones: Trevor Peak, West Wolf, Seestor, Sun Plateau, Horn, all being to the immediate west of the property, and Violet, Petal, GoNo, and Central all being within the Property (for locations refer to Figure 6.1.1). Ascot and Keewatin were responsible for the majority of historical work carried out in the current Tatogga Lake claims.

In 1991 Noranda Exploration completed a soil geochemistry survey, ground magnetics survey and a follow-up very low frequency electromagnetic ("VLF-EM") and IP survey over the Quash occurrence on the Property. The magnetics and VLF-EM were considered successful at mapping lithological contacts and major structural features. A chargeability anomaly in the IP survey was subsequently trenched. Unfortunately samples from the trench were not economically mineralised, but contained significant pyritic siltstone, which was interpreted as the source of the chargeability anomaly.

A trench through the Central soil anomaly showed galena and sphalerite-bearing iron-carbonate stringers and veinlets with low Au, Ag and Cu values with up to 1,088 ppm Pb and 4,417 ppm Zn. Likewise, the Quash soil grid was presented as primarily a Pb-Zn anomaly with only minor scattered anomalous Cu values. Based on these results Noranda decided not to follow up on this property.

These soil sample results have, however, assumed a much greater importance in the context of the significant copper/gold soil anomaly delimited between Quash and Pass Gossan (on the Property, refer to Figure 6.1.1) during the 2013 season of work.
The northern portion of the Tatogga Lake Property, in which two gossanous zones have been encountered, has had the least exploration work to date. The first zone, which is referred to as the Saddle Gossan (on the Property), was sampled by Brooklyn Resources Inc., which, in 1991, defined a “pyritic, silicified zone in scattered exposures and float” (Mitchell, 1991). They took five rock samples, three of which returned elevated gold (40, 60 and 370 ppb respectively), but did not report assays for copper. Whereas the report recommended a follow-up programme of geophysics, geochemistry and trenching, no further work was completed on the property.

The second gossanous zone is an area of extremely red-rusty looking rock, referred to by NCM as the Ash Gossan, that was noted during regional mapping by the Geological Survey of British Columbia (“GSBC”) (Ash, et al., 1996), but was not examined or sampled until 2013 by NCM. The only other exploration work recorded for the northern portion of the property was a 1991 programme by Yuma Gold Mines Inc. consisting of 41 soil and 8 sediment samples focused on a magnetic high in a 1958 airborne survey. This sampling returned no significant results. From the current government mapping it is probable that this magnetic high represents part of the recent Edziza volcanic package.

In 2012, because of its deemed prospectivity, Geoscience BC decided to conduct an airborne magnetics survey over Block 3 of its QUEST Northwest Project (Figure 6.2_1), an area that completely surrounds the Tatogga Lake Property.

![Figure 6.2_1](image_url)

As NCM had, in 2011 and 2012, already flown most of the Property for magnetics, rather than re-flying the Property, Geoscience BC purchased the NCM magnetics data for incorporation into
their flying of the balance of Block 3. One rendition of the resulting merged data set is presented in Figure 6.2.2.

This data set is a significant contribution to the information needed to explain the structural history of the Tatogga Property and its surrounds – a structural history which, together with its relationship to mineralisation, is still being pieced together.

During 2012, 2013 and 2014 NCM completed limited geological mapping and soil geochemistry surveys on the Property as well as an IP survey in 2014 over the Quash-Pass Gossan target.
7 GEOLOGICAL SETTING AND MINERALISATION

7.1 Introduction

The Tatogga Lake Property lies in an area of complex geology, which has been, and continues to be, studied in great detail because of its rich mineral endowment. Integration of the results of these studies into ongoing exploration is likely to play a significant role in future mineral deposit discoveries.

7.2 Regional Geology

The northern Cordilleran Orogen of western Canada, within which the Tatogga Lake Property is located, comprises rocks subject to 1.8 billion years of tectonic history, from cratonisation of the Laurentian continental core to current subduction and transform motion off the west coast today (see Figure 7.2.1 as per Nelson, et al., 2013).

During this time, the evolution of tectonic regimes, from Proterozoic intra-cratic basin subsidence and Palaeozoic rifting to construction of Mesozoic and younger intra-oceanic and
continent-margin arcs, has led to the development of considerable mineralisation of diverse metallogenic styles in the area.

Within the Cordilleran Orogen, the Tatogga Lake Property lies, importantly, entirely within the island arc component of the Stikine Terrane (Figure 7.2_2 as per Nelson et. Al., 2013), this being a part of the peri-Laurentian palaeogeographic realm (Figure 7.2_1).

As such, it lies in a geological and metallogenic setting similar to the modern, well-mineralised, western Pacific basin. While this observation supports the prospective regional geological setting of the property, it does not guarantee the presence on the property of any economically exploitable mineral deposits.
Unlike the current western Pacific basin, however, the contemporaneous and originally collinear, Stikine and Quesnellia terranes have undergone considerable tectonic deformation since the inferred time of their mineralising events – which may lead their mineral deposits to be structurally more complex, in their present day disposition, than equivalent deposits in the western Pacific.

Figure 7.2_3 (after Nelson et.al, 2013) shows the scale of deformation to which the Stikine and Quesnellia island arcs were subject between the Late Triassic and the Middle Jurassic – the time interval during which almost all currently identified mineral deposits in the Stikine terrane were formed.

The geological history of the Iskut/Tatogga Lake area of the Stikine Terrane is described (Alldrick, et al., 2004) as a “series of five mid-Paleozoic to mid-Mesozoic volcanic arcs” with two lulls in volcanism corresponding with tectonic uplift at the Triassic-Jurassic boundary (the Inklinian
orogeny) and in the Lower Jurassic (the Nassian orogeny). As can be seen in Figure 7.2.4, the area is primarily underlain by Mesozoic volcanic and associated volcaniclastic and sedimentary rocks consisting of the Middle to Upper Triassic Stuhini Group, the Lower Jurassic Hazelton Group, and the Middle Jurassic Bowser Lake Group (Ash, et al., 1996).

These rocks are faulted against and partially overlie metasedimentary and metavolcanic rocks of the Paleozoic Stikine Assemblage, which appear in the northeast corner of the map in Figure 7.2.4. In the north-western portion of the Tatogga Lake regional map Late Miocene to Holocene volcanics of the mount Edziza volcanic complex are found.
Stratigraphic sections, as interpreted by Ash (Ash, 2011) for the western and eastern halves of the Tatogga Lake area are presented in Figure 7.2.5.

The five rock packages represented in these sections are described as follows:

The Paleozoic Stikine assemblage is composed of a belt of Early Devonian to mid-Permian foliated and deformed metasedimentary and metavolcanic rocks including phyllitic mafic and felsic metavolcanics argillites, massive limestone and banded marbles (Ash, et al., 1996).
The Stuhini arc succession is dominated by clastic sedimentary rocks with lesser mafic volcanics and related epiclastics. Intercalated porphyritic basaltic flows appear at the base, overlain by breccias and sedimentary rocks ranging from siltstones to mudstones and volcanic sandstones, and minor carbonates. These sequences are thought to be broadly folded into an anticline within the map area (Ash, et al., 1996).

The Hazelton Group is an island arc succession consisting of intermediate volcanics and epiclastics overlain by a thin interval of felsic volcanics and capped by fine-grained clastic sediments locally intercalated with bimodal volcanics dominated by basalts (Alldrick, et al., 2004). The Hazelton Group unconformably overlies the Stuhini group.

The contact between the Middle Jurassic marine sedimentary succession of the Bowser Lake Group and the underlying Hazelton group is gradational. Some researchers have placed the boundary where the tuffaceous laminae common in the upper zone of the Hazelton group are no longer present within the black siltstones (Alldrick, et al., 2004). The gradational nature of the contact can make the boundary very difficult to place, particularly in areas of more limited exposure.

The Mount Edziza volcanic complex is composed of alkaline basalt and hawaiite with lesser intermediate and felsic volcanic flows. There were five major magmatic events related to this complex ranging from approximately 7.5 Ma to 2,000 B.P. (Alldrick, et al., 2004).

Gagnon, et al., 2012, have documented a comprehensive re-interpretation of the Upper Hazelton Group stratigraphy across the province (Figure 7.2_6). This is an important reference in regard to future mapping on the Tatogga Lake Property, in particular with respect to determining the location of the important Stuhini – Hazelton contact described below.
Kyba (2014) has drawn attention to the importance of the Stuhini-Hazelton contact in regard to its possible controlling influence on the development of mineralization in north-western British Columbia. He wrote:

"Within the Stikine terrane of northwestern BC, clusters of Triassic-Jurassic mineral occurrences, including several large porphyry copper-gold deposits, are located within 2 km of the contact of the Triassic Stuhini Group and Jurassic Hazelton Group. The contact approximates a level of exposure of the volcanic pile and, more importantly, the palaeotopography and related depositional environment at the onset of Hazelton volcanism. It varies from a sharp, angular unconformity, where the Hazelton Group overlays folded and strongly deformed Stuhini group, to a subtle (~15° strike) difference in bedding. The unconformity represents a Late Triassic hiatus of volcanism, during which the Stikine terrane underwent significant structural tectonic change and deformation, resulting in crustal preconditioning. To identify crustal preconditioning and specific structures that were exploited by..."
mineralised systems, cross-sections transecting the Stuhini-Hazelton contact have been documented in detail in three mineral districts: Brucejack-KSM, Snip –Johnny Mountain and Red Chris. Although each district is unique, common themes include contractional deformation of the Stuhini Group succeeded by mild extension or transtension at the onset of the younger, more mineralized magmatic episode; and the key role of long-lived structures in the formation of economic deposits.”

Figure 7.2_7 shows the Stuhini-Hazelton contact (as a red line) in the Tatogga-region, extracted from Kyba’s map. While the “red-line” map shows the contact as a single, relatively straight line crossing the Tatogga Lake Property, in reality, as determined by more detailed mapping, detailed mapping by NCM geologists has found this contact present at many more locations on the Property. While this mapping supports the prospective nature of the Property, it does not guarantee the presence on the property of any economically exploitable mineral deposits.

![Figure 7.2_7](image)

Figure 7.2_7
Location of the Stuhini-Hazelton Contact Indicated By Red Line (Kyba, 2014)

7.3 Regional Mineralisation

Northwest British Columbia is well-endowed with economic minerals and has a long history of mining.

Figure 7.3_1 and Figure 7.3_2 show the locations and types of significant copper and gold deposits respectively, in northwest British Columbia. A number of deposits, which are mineralised in both copper and gold, appear on both maps.
The Iskut area of the Stikine Terrane is particularly well-mineralised in copper and gold. All mineral occurrences of the BC MINFILE database, which lie in and immediately around the Tatogga Lake Property, are listed in Table 7.3.1 and are shown on the map in Figure 6.1. While...
the proximity of these mineral occurrences to the property supports its prospective nature, it does not guarantee the presence on the property of any economically exploitable mineral deposits.

<table>
<thead>
<tr>
<th>MinFile Occurrence</th>
<th>MinFile No.</th>
<th>Controlled by</th>
<th>Status</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Deposit Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>104G-167</td>
<td>NCM</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>VMS</td>
<td>Massive-Stratabound</td>
</tr>
<tr>
<td>GoNo</td>
<td>104G-168</td>
<td>NCM</td>
<td>Showing</td>
<td>Au-Ag-Cu-Zn-Pb-As</td>
<td>Polymetallic Veins</td>
<td>Vein</td>
</tr>
<tr>
<td>Pass Gossan</td>
<td>104G-166</td>
<td>NCM</td>
<td>Showing</td>
<td>Pb-Zn-Cu-Au</td>
<td>Polymetallic Veins</td>
<td>Vein-Shear</td>
</tr>
<tr>
<td>Petal</td>
<td>104G-165</td>
<td>NCM</td>
<td>Showing</td>
<td>Au-Ag-Cu</td>
<td>Cu+/- Ag quartz veins</td>
<td>Vein-Shear</td>
</tr>
<tr>
<td>Quash</td>
<td>104G-161</td>
<td>NCM</td>
<td>Showing</td>
<td>Zn-Pb-Au-Ag-Cu</td>
<td>Polymetallic Veins</td>
<td>Disseminated-Vein</td>
</tr>
<tr>
<td>Violet</td>
<td>104G-164</td>
<td>NCM</td>
<td>Showing</td>
<td>Au-Cu</td>
<td>Cu+/- Ag quartz veins</td>
<td>Vein-Shear</td>
</tr>
<tr>
<td>Violet East</td>
<td>104G-163</td>
<td>Colorado</td>
<td>Showing</td>
<td>Au-Cu</td>
<td>Cu+/- Ag quartz veins</td>
<td>Vein-Disseminated</td>
</tr>
<tr>
<td>Edon</td>
<td>104H-004</td>
<td>Colorado</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Stockwork-Vein</td>
<td></td>
</tr>
<tr>
<td>Mabon</td>
<td>104H-035</td>
<td>Colorado</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Disseminated</td>
<td></td>
</tr>
<tr>
<td>Castle</td>
<td>104G-076</td>
<td>Freepart</td>
<td>Prospect</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Porphyry</td>
<td>Vein-Shear</td>
</tr>
<tr>
<td>Red Chris</td>
<td>104H-005</td>
<td>Imperial</td>
<td>Mine</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Porphyry</td>
<td>Vein-Stockwork</td>
</tr>
<tr>
<td>Curt</td>
<td>104G-169</td>
<td>Teck</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Au quartz veins</td>
<td>Disseminated-Vein</td>
</tr>
<tr>
<td>GJ</td>
<td>104G-034</td>
<td>Teck</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Porphyry</td>
<td>Vein-Stockwork</td>
</tr>
<tr>
<td>Horn</td>
<td>104G-035</td>
<td>Teck</td>
<td>Prospect</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Porphyry</td>
<td>Vein-Shear</td>
</tr>
<tr>
<td>QC</td>
<td>104G-033</td>
<td>Teck</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Porphyry</td>
<td>Disseminated-Vein</td>
</tr>
<tr>
<td>South Seestor</td>
<td>104G-170</td>
<td>Teck</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Disseminated</td>
<td></td>
</tr>
<tr>
<td>Trevor Peak</td>
<td>104G-173</td>
<td>Teck</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Au quartz veins</td>
<td>Shear-Vein</td>
</tr>
<tr>
<td>Wolf</td>
<td>104G-045</td>
<td>Teck</td>
<td>Prospect</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Porphyry</td>
<td>Vein-Massive</td>
</tr>
<tr>
<td>Wolf West</td>
<td>104G-172</td>
<td>Teck</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Porphyry</td>
<td>Shear-Vein</td>
</tr>
<tr>
<td>Coyote</td>
<td>104H-012</td>
<td>Oz</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Vein</td>
<td></td>
</tr>
<tr>
<td>Coyote 3</td>
<td>104H-024</td>
<td>Oz</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Vein</td>
<td></td>
</tr>
<tr>
<td>B31</td>
<td>104H-036</td>
<td>Victory</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Disseminated</td>
<td></td>
</tr>
<tr>
<td>Gin</td>
<td>104H-031</td>
<td>Cazador</td>
<td>Showing</td>
<td>Zn-Pb-Cu-Au-Ag</td>
<td>Vein</td>
<td></td>
</tr>
</tbody>
</table>
7.4 Property Geology

7.4.1 Tatogga Lake Property Geology

The Tatogga Lake Property is underlain by three, and possibly four, of the five distinct successions of volcanic and volcanogenic sedimentary rocks described in Section 7.2 – the Stuhini Group, the Hazelton Group, possibly the Bowser Group and the Mount Edziza Volcanic Complex.

The geological map of the Property is reproduced in Figure 7.4.1_1, which represents the results of detailed mapping by the GSBC (Ash, et al., 1997) combined with the results of mapping by NCM in 2012, 2013 and 2014.
The main lithologies in the project area are therefore, in order of deposition:

- Stuhini shales and volcanic wackies (in the legend denominated uTs and dark blue; for example refer to top left photo in Figure 7.3_2) and limestone (uTs and light blue) with occasional intervals of augite phyric basalt (uTbv and uTbve).

- The Stuhini group is unconformably overlain by Upper Triassic to Lower Jurassic intermediate volcaniclastic breccia, tuffs and epiclastics (Javb) of the Hazelton Group (refer to the top right photo in Figure 7.3_2).

- The Lower Hazelton intermediate volcanics are coeval and chemically equivalent with the quartz monzonitic “Red Suite” Intrusions (EJmd) which are found intruding the Stuhini Group (refer to the bottom left photo in Figure 7.3_2).

- Lower to middle Jurassic Upper Hazelton Group bimodal mafic and felsic volcanic and epiclastics (IJb IJfv and Ufve) unconformably overly the Lower Hazelton units. They are distinct from the earlier bimodal volcanics in that they contain intervals of fossil-bearing black shales and limestones (IJl). (refer to the bottom right photo in Figure 7.3_2). These units are coeval and chemically equivalent to the alkali granites and diorites (EJg and EJgd) found intruding the Lower and Upper Hazelton successions.
The northern portion of the Property contains two Tertiary Mount Edziza volcanos and smaller occurrences of this volcanic material and its derivatives. These tertiary volcanics are composed of alkaline basalt and hawaiite with lesser intermediate and felsic volcanic flows.

NCM’s exploration at the Property from 2011 to 2014 has progressed three significant exploration prospects: a grassroots gold mineralisation discovery called Saddle, a porphyry copper-gold prospect called Quash – Pass Gossan, and an epithermal zinc, lead, (gold, copper) prospect called Quash.

7.4.2 Saddle Target Geology and Mineralisation

Figure 7.4.2_1 indicates the location of the Saddle Target demarcated by the white outline on the geological map for the northwest Tatogga Lake area. The target takes its name from a saddle in the valley which runs north-west to south-east just north of the Saddle Prospect, which valley is the host to a ~4 km long shear zone.
Figure 7.4.2.1
Geological Map of the Northwest Tatogga Area (legend in Figure 7.4.1.1)

Saddle Valley and Shear Zone
The Saddle valley lies 6 kilometres due east of the Castle Au/Cu prospect, also indicated on the map in Figure 7.4.2.1. While this proximity may be coincidental, it is not uncommon for mineralised intrusive rocks to occur on related geological structures within such a distance.

With rock exposure within this area generally poor, mapping was completed based on frost boils and rare outcrops consisting entirely of very sheared, completely quartz-sericite-pyrite altered rock. Some of these have relict textures suggestive of Hazelton rocks and some look more intrusive in origin. However, most of the material is so altered and sheared as to have destroyed the protolith textures entirely.

NCM therefore has interpreted most of the valley area to be dominated by Hazelton Group rocks. They are maroon to deep green volcanic breccias and epiclastics with bedding-parallel mafic flows, including amygdaloidal and some pillow basalts. They are generally strongly weathered and variably altered with sericite, epidote and chlorite-rich zones and an almost pervasive carbonate alteration. Pervasive oxidation has made it difficult to identify some of the more subtle differences in alteration.

Large, and very prominently visible, occurrences of rusty-red gossanous material can be found in the bottom of the valley, which first attracted exploration in 1991 and were the reason for NCM’s initial field exploration. The valley-bottom zone within which these gossans are developed is a zone of completely sheared and quartz – sericite – pyrite ± clay-altered material with pyrite content often exceeding 10%. Relict textures within this zone hint at two very distinct protoliths.

The first protolith is the epiclastic unit that dominates the valley being the most easily recognisable from its more blocky and “mottled” appearance as its heterogeneity provides more breakup of the patterns imposed by shearing.

The second protolith is a fine-grained intrusive unit that is now completely leucocratic. Due to the complete nature of the alteration and textural destruction from strong shearing, it is not known whether this composition is representative of the protolith or whether previously existing mafic content has been completely replaced by the pyrite. Despite the abundance of pyrite, little to no copper-bearing minerals are seen within this zone with malachite and chalcopyrite more often seen to the south of this zone, often associated with smaller zones of less intense shearing, and, to a lesser extent, in the hillside to the north of the zone.

When low grade mineralisation is observed in the valley, it is in sub-vertical, sub-parallel, relatively large (10 cm - 30 cm) malachite + chalcopyrite-bearing quartz-carbonate veins that appear to be syn- or post-deformation that are oriented roughly parallel to the dominant shearing directions measured across the whole zone - approximately 215°/80° (dip, direction/dip). These veins were seen in varying frequencies dispersed throughout the cliffs, ridges and plateaus on the north margin of the valley.

Additional mineralisation was seen in a much more widely dispersed network of white to orange carbonate veinlets and fracture coatings with abundant malachite and rare visible sulphides.

Abundant structural complexity, including tight overturned folds and textures suggestive of at least two major (roughly perpendicular) folding events, was seen in most of the rocks in the valley.
The epiclastics in the cliffs on northeast side of valley show a predominantly shallow northeasterly dip while those on the southwest of the saddle valley are much more irregular, but with a predominantly moderate to steeply south-westerly dip. This suggests the presence of an anticline roughly parallel to the valley bottom, the shear zone, and intrusion contained therein. The small-scale folding observed in the outcrop is likely parasitic on these larger structures.

While the main mineralisation is on the southern side of Saddle valley, visible mineralisation is also observable on the lower north side of the valley, with several chalcopyrite and malachite-bearing quartz-carbonate and quartz veins with similar nature and orientation to those observed in the south of the Saddle area. These occur in outcrop down small stream-incised valleys through the steep cliffs on this side of the plateau and reported high levels of copper and gold in rock samples.

Figure 7.4.2_2 shows a detailed geological map for the Saddle target on the southwest of the valley.

![Detailed Geological Map by New Chris Minerals of the Saddle Target Area](image)

The rocks in the main Saddle Target area are typically massive with only rare locations that show bedding, including two that show grading from volcanic breccias to the finer epiclastics. These are locally accompanied by rarer andesitic or basaltic flows, often amygdaloidal, and rarely showing indistinct deformed pillows, that appear to be concordant with the surrounding rocks. The Hazelton volcanics and volcaniclastics here have the same dull maroon to green colouration as in the valley, depending on the alteration. Generally, the green colouration seems to result
from chlorite and/or epidote alteration. Due to the massive and repetitive nature of most of the Hazelton strata and the strong deformation that is evident in the area it is very difficult to trace these distinct units over any significant distance. It is also probable that, with a shallow water setting suggested by the distinct maroon colouration, rapid facies changes complicate the stratigraphy in the region as well.

The volcanic breccia is fairly variable in composition even between outcrops only a few metres separated. The predominant clast type is typically composed of feldspar-phyric crowded porphyry and a groundmass that appears to be of almost the same composition. It is unclear if the phenocrysts in the matrix of the breccia are primary to the rock or fragments with minimal reworking. While the volcanic breccia can be almost monomictic locally, these clasts are often accompanied by hornblende-phyric clasts, maroon mudstone clasts, and rare pumice fragments. Clasts are generally poorly-sorted, commonly ranging from granule to cobble size and from sub-angular to rounded often within the same outcrop. Rarely clasts can be several metres in diameter. Very commonly the clasts are significantly more altered than the groundmass leading to a mottled appearance. One of the most striking examples is where strong epidote alteration disproportionately affects the clasts leaving them pale green in a matrix that mineralogically looks almost identical but is a deep maroon.

In almost every cliff-face over the Saddle gold target there are prominent pale dykes cutting the darker Hazelton rock. These rhyolitic dykes are strongly flow-banded and are often seen intruding shear zones and showing signs of significant shearing themselves. In some areas they are seen entering intense shear zones where they are dismembered into lozenge shaped boudins, or show shear-parallel sheath folding, and other shear-related fold features.

While the rocks in the main mineralised area are significantly less pervasively deformed than in the shear zone in the centre of Saddle valley, there are distinct, discrete zones, away from the main shear, of high strain that appear to be brittle-ductile in nature that introduce local foliation and fracture sets subparallel to the primary valley shear at least up to several km away on the perimeter of this main shear. Most of the rocks in the main mineralised zone appear to at least be weakly deformed and fractured.

As the horizons in the Hazelton rocks are difficult to reliably trace over any distance and bedding planes are only rarely observed, it is these rhyolitic dykes that give the best indication of how deformed the rock in this zone really is. In addition to the shear features discussed above they show larger-scale tight to open folding. This folding is variable even across the main ridge, which shows folding that ranges from upright to recumbent, with axes that range from steeply plunging to nearly horizontal. In a few locations at least two generations of folding are apparent within the same outcrop, producing complicated fold interference patterns. In contrast to the Hazelton units, these rhyolitic dykes are much more easily traced over the surface. Their high quartz content means that they are quite resistant to weathering and often produce outcrop even when the Hazelton rocks surrounding them are weathering recessively. Their meandering and tight folding style may be due the rheological contrast between these thinner but more competent rhyolites and the surrounding Hazelton rocks.

These rhyolites are associated with gossanous zones that appear to be associated with the high gold response in both rock and soil samples at the Saddle Target. The gossanous zones represent intensely to completely quartz – sericite – pyrite replaced rock, similar in appearance to
the shear-zone rocks in the valley. They range in size from decimetre-scale to rarely linear features traceable up to 10 m across the surface and seem to always be in close proximity to the rhyolites. While many of them have no fresh mafic phases remaining, most of the gossan appears to be Hazelton material - with some exceptions where the gossanous zone spans the contact zone of both rhyolite and Hazelton epiclastics. It is currently hypothesised that the folding and other deformation of these competent rhyolite dykes may have created pressure shadows allowing for the concentration of mineralized fluids within these distributed pods. Consequently, the rhyolitic dykes may be the controlling factors on localisation of high-grade gold mineralisation.

7.4.3 The Geology and Mineralisation Over the Quash and Pass Gossan Target Areas

The Quash – Pass Gossan target is a gold-copper porphyry prospect characterised by high levels of copper, gold, zinc and lead in soil associated with a monzonitic intrusion in contact with both Hazelton and Stuhini Group strata. The intrusion is represented on a map produced by the Geological Survey of British Columbia as being of the same age as the nearby Red Chris and GJ Cu/Au porphyry deposits (Ash et al, 1996). The author has not been able to independently verify this age, but finds it to be plausible, given the geological structures also present on the geological map and verified by the author during a field visit with Mr. Ash in 2011.

Figure 7.4.3_1 shows the geological map for the Quash and Pass Gossan areas generated by fieldwork of NCM geologists.
The map illustrates that the Quash and Pass Gossan area has complex geology with contacts between the following rock types:

- bimodal mafic and felsic volcanic and epiclastic rocks, siltstones and several intercalations of fossiliferous limestone, cut by several roughly east-west oriented fine-grained, porphyritic granitoid bodies.
- completely carbonate altered volcanic breccias and crystal to crystal-lithic tuffs, together with local development of green amygdaloidal basalts.

Mapping has specifically attempted to locate the Hazelton-Stuhini unconformity. While it did identify outcrops that appear to be typical for rocks of both groups, no outcrop was identified that showed this contact explicitly.

A thrust fault was identified in the ridge to the north of the Pass Gossan mineral occurrence, which appeared to superpose Stuhini strata on top of other Stuhini rocks. However, the ridge in question is outside of NCM’s claim block and the Stuhini identification was based on the bedded nature of the outcrop and was not checked up close. The presence of this fault and the identification of the rocks at the bottom of the Pass Gossan valley as Hazelton may indicate that the Stuhini-Hazelton contact in this region is actually a fault contact rather than an unconformity as has hitherto been reported (Ash et al, 1996).

Detailed geological mapping by Ascot Resources Ltd in 1991 (Mehner, D. T., 1991) of the Quash Zn-Pb-Ag prospect southwest of the Pass Gossan area, reported minor amounts of disseminated galena and possible sphalerite hosted within light green silicious siltstone, together with sphalerite, galena and pyrite-mineralised iron carbonate stringers, veinlets and fracture in-fillings. Outcrops of diorite intrusive were noted. Bedding, displaying evidence of two phases of folding, was seen to strike north-south, whereas chargeability trends more east-west.

No estimates of lengths, widths, depths or degree of continuity of mineralisation on the property have yet been established. These must await drilling results of the soil geochemical anomalies, the tenor and sizes of which are described in Section 9 below.
8 DEPOSIT TYPES

8.1 Introduction

Whereas no particular deposits have been encountered, NCM’s exploration strategy has focused on the prospective nature of the Tatogga Lake Property for gold-copper porphyry deposits, as well as related proximal or distal epithermal mineralisation. It is also prospective for volcanogenic massive sulphide deposits, which may, or may not, be related to porphyry-style mineralising events.

This is supported by the similarity of the geology on the Property to that hosting the very large Red Chris Au/Cu Porphyry mine only 15 km distant from the Property boundary, and the three advanced Au/Cu porphyry prospects described in Section 23, all less than 5 km distant from the Property boundary.

The Property’s prospectivity for VMS deposits, and Au/Ag-enriched VMS deposits in particular, is supported by the large extent of Upper Hazelton Formation present on the Property, the Upper Hazelton being host to the Eskay Creek deposit, which produced 104 tonnes of gold and 5,400 tonnes of silver from very high grade ore (British Columbia Geological Survey, 2010).

The mention of specific lesser-known mineral deposits (in conjunction with better-known conceptual deposit models) in this section as providing “models” for exploration of the Tatogga property does not imply that such deposits will be found on the property. The named deposits do, however, provide the explorationist with essential guidance on what features to search for during their exploration activities.

8.2 The Brucejack Model

The Brucejack deposit has declared Measured and Indicated Mineral resources (Pretivm Resources Inc., 2013) amounting to 20.2 million tonnes grading 14.8 g/t Au for 9.6 million ounces in the Measured and Indicated categories and 9.9 million tonnes grading 17.9 g/t for 5.7 million ounces in the Inferred category.

In respect of potential porphyry-related gold mineralisation, the “Transitional Meso-to-Epithermal Stockwork Gold” model developed by Pretivm Resources Inc. for their Brucejack gold deposit is also particularly relevant to the Tatogga Lake Property, because of the large extent to which the Stuhini/Hazelton unconformity is present on the Property (Figure 7.4.1_1). The model is presented pictorially in Figure 8.2_1.
It is clear that the Brucejack deposit is developed precisely on the Stuhini / Hazelton unconformity. In writing about the relationship between this unconformity and mineralisation, Kyba (Kyba, 2013), the Geological Survey Regional Geologist for Northwestern British Columbia, has written:

“The Jurassic – Triassic unconformity is a prominent feature at several localities throughout Northwestern British Columbia and proximal (<2.5 km) to multiple significant deposits including Red Chris, KSM, Brucejack, Schaft Creek, Kemess, GJ, Castle, North ROK and at least 459 other known mineral occurrences.”

“Large Triassic age structures are good candidates for long-lived reactivation and planes of weakness to be exploited by syn- or younger intrusive systems.”

“The unconformity is obvious as an angular unconformity near the GJ prospect 24 km south-south west of Iskut and consists of moderately dipping, thinly bedded, variably folded Stuhini Group volcanic sediments overlain by gently dipping, massive, Hazelton Group andesite flows and andesite block breccia. Type localities in the McTagg Anticline are marked by rounded, polylethic, felsic intrusive and quartz dominated pebble conglomerate mapped as the Jack formation.

However, the unconformity is laterally variable, infills paleo-topography, and can be as subtle as a 15 degree difference in strike azimuth.

Some Hazelton and Stuhini lithologies can be very challenging to differentiate and therefore it is difficult to define the unconformity.

The only consistent differences observed to date include: moderate to strong, pervasive, ductile deformation and general absence of quartz in the Stuhini Group.”
The fact the Stuhini/Hazelton has been identified close to the GJ deposit in particular, which is itself close to NCM’s Quash – Pass Gossan prospect described below, makes it an important geological feature to locate during exploration of the Quash – Pass Gossan prospect.
9 EXPLORATION

9.1 Introduction

Exploration activities and surveys carried out by NCM at Tatogga Lake comprise airborne and ground geophysics, sampling and mapping of selected areas combined with rock and soil sampling.

Based on the results from airborne geophysical surveys and initial sampling, mapping and follow-up sampling has focused on two areas: the Saddle Gossan area in the north of the centre of the Property area and the Pass Gossan/Quash targets further to the southwest.

Another prospect, the Valleyside gold target at 1.2 km south-east of the Pass Gossan target, has been identified by soil sampling conducted at relatively wide spacing.

The procedures followed and parameters applied to both the geophysical and geochemical surveys described below are considered appropriate for the scale and maturity of exploration being conducted, and absent of factors likely to have caused material bias in any regard.

9.2 Airborne Geophysics – Tatogga Lake Property

9.2.1 Introduction

During 2011 and 2012 airborne magnetic and transient electromagnetic ("TEM") airborne surveys were carried out over the bulk of the Property, involving approximately 8,100 line-km, with approximately 45% of this flown area covered by an airborne radiometric survey.

The 2011 survey was conducted by AeroQuest between August 23rd and December 7th, and consisted of a total of 760.4 line-km of flight (Smyth, 2011). The 2012 survey was conducted by SkyTEM between May 16th and June 10th, and consisted of a total of 1,619 line-km of flight (Miller, 2013). All flight lines were oriented at a bearing of 030° with a spacing of 100 m with Tie Lines spaced at 1,000 m flown at a bearing of 120°.

In 2012 Mira Geoscience was contracted to complete unconstrained one dimensional ("1D") time-domain electromagnetic inversion and unconstrained three dimensional ("3D") magnetic inversion of the survey results using the University of British Columbia Geophysical Inversion Facility ("UBC-GIF") algorithms for electromagnetics one dimensional time domain observations and magnetic sources and receivers ("EM1DTM") and forward modelling and inversion of magnetic data over 3 dimensional structures ("MAG3D") (Miller, 2013).

9.2.2 Airborne Magnetic Survey

The surface residual magnetics map of the Property is presented in the central area of Figure 9.2.2_1, the surrounding area showing the results of a Geoscience BC survey flown in 2013. The map shows two dominant regional trends – the SW-NE trend shows relatively sharp gradients, but no less prominent are a series of E-W to SE-NW magnetic features.
Evaluation of the 3D susceptibility model has been initiated at a broad scale (Figure 9.2.2_2) and merits a much finer scale interpretation in the areas of the three drill targets that have discussed earlier in this report.
9.2.3 Airborne Electro-Magnetic Survey

As evidenced in Figure 9.2.3_1, apart from strong topographic effects from the deeply incised valleys at the Property, conductivity readings were very flat, showing very high resistivity across the Property.
The Mira Geoscience report (2012) concluded that, “no highly conductive zones extend to depth except in major river and lake valleys. These are interpreted to be deep deposits of conductive sediments”.

Nevertheless, there is some detail discernible at depth in the EM survey that, with the assistance of the magnetic susceptibility, may help identify intrusive bodies. There is a set of SW-NE linear features of moderate to high resistivity features in the southwest portion of the Property that do not appear to be correlated with topography (Figure 9.2.3_2).
9.2.4 Airborne Radiometric Survey

While the radiometrics results from the AeroQuest survey are considered to be of mediocre quality because of the variable amount of snow on the ground at the time of the survey, as evidenced in the potassium map (Figure 9.2.4_1), there is structure to the data that does not correlate to topography or the treeline and this remains to be interpreted in conjunction with past and future mapping by NCM.
9.3 Exploration Results for the Saddle Target Area

9.3.1 Rock Chip Sampling

The geological mapping programme at Saddle was completed by NCM during the 2013 and 2014 exploration seasons using a Garmin hand-held GPS unit for recording ground stations, and classical “pencil on mylar over imagery” drafting of map elements for later digitising.

Concurrent with geological mapping 62 rock samples were collected for mapping purposes and analysis in 2013 from the Saddle area, followed by 66 rock samples in 2014. Of the eight rock samples that returned over 1 g/t Au, yellow highlighted in Table 9.3.1_1, all but one of them came from an area with abundant gossanous blebs or structures that included this gossanous material with some of the surrounding wall-rock.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Map Unit</th>
<th>Location</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Easting</td>
<td>Northing</td>
</tr>
<tr>
<td>H222217</td>
<td>Epiclastic Sandstone and Basalt Flow</td>
<td>434548</td>
<td>6408121</td>
</tr>
<tr>
<td>H222219</td>
<td>Hornblende-Phyric Basalt</td>
<td>434072</td>
<td>6407885</td>
</tr>
<tr>
<td>H222220</td>
<td>Epiclastic Sandstone</td>
<td>434072</td>
<td>6407847</td>
</tr>
<tr>
<td>H222227</td>
<td>Epiclastic Sandstone and Rhyolite Dyke</td>
<td>433974</td>
<td>6407765</td>
</tr>
<tr>
<td>H222229</td>
<td>Gossanous Sheared Zone</td>
<td>434144</td>
<td>6407934</td>
</tr>
<tr>
<td>H222230</td>
<td>Gossanous Sheared Zone</td>
<td>433742</td>
<td>6408204</td>
</tr>
<tr>
<td>H222234</td>
<td>Gossanous Zone</td>
<td>434025</td>
<td>6407945</td>
</tr>
<tr>
<td>H222236</td>
<td>Gossanous Zone</td>
<td>433890</td>
<td>6408211</td>
</tr>
<tr>
<td>H222239</td>
<td>Gossanous Zone</td>
<td>434126</td>
<td>6408728</td>
</tr>
<tr>
<td>H222243</td>
<td>Rhyolite Dyke</td>
<td>434185</td>
<td>6408754</td>
</tr>
<tr>
<td>H222246</td>
<td>Gossanous Zone</td>
<td>434143</td>
<td>6408735</td>
</tr>
<tr>
<td>H222249</td>
<td>Gossanous Zone and Surrounding Volcanic Breccia</td>
<td>434165</td>
<td>6408067</td>
</tr>
<tr>
<td>Q343655</td>
<td>Late Mafic Dyke and Volcanic Breccia</td>
<td>434439</td>
<td>6408091</td>
</tr>
<tr>
<td>R269155</td>
<td>Rhyolitic Dyke and Cross-cutting Mafic Dyke</td>
<td>434122</td>
<td>6408083</td>
</tr>
<tr>
<td>R269157</td>
<td>Volcanic Breccia and Epiclastic Sandstone</td>
<td>434179</td>
<td>6408400</td>
</tr>
<tr>
<td>R269158</td>
<td>Sheared and Altered Gossanous Zone</td>
<td>434177</td>
<td>6408406</td>
</tr>
</tbody>
</table>

The table also illustrates that the highest copper results (five samples over 1% Cu) were returned from much more lithologically variable material, including volcanic breccias, basalts, and epiclastic sandstones, all of which contained chalcopyrite and/or malachite.

Figures 9.3.1_1 and 9.3.1_2 show the locations of anomalous gold and copper in rock samples at Saddle. Of particular interest are the high copper samples in the south, indicating that copper mineralisation is open to the (rugged) south of the area hitherto subjected to soil sampling.
Figure 9.3.1_1
Location of Anomalous Au Rock Sample Results Superimposed Over Saddle Area Geology

Figure 9.3.1_2
Location of Anomalous Cu Rock Sample Results Superimposed Over Saddle Area Geology
9.3.2 Soil Sampling Results

During 2013 a reconnaissance survey of 879 soil samples was undertaken in the Saddle valley along lines spaced approximately 400 m apart, with 50 m between sample sites. In 2014 an in-fill sampling program (939 samples) was undertaken over the anomalous area delimited in 2013 with line spacing ranging from 50 m to 100 m, and sample spacing ranging from 25 m to 50 m. Sampling procedures and quality control are described in Section 11 below.

The results from soil sampling in the Saddle target area show two coherent areas highly anomalous (defined as exceeding 0.1 g/t Au) in gold (Figure 9.3.2_1): the Northern Gold anomaly and the Southern Gold anomaly.

![Figure 9.3.2_1](image)

Au Assay Results of Soil Samples Superimposed Over Saddle Area Geology

The southernmost of these anomalies, defined by 80 samples with grades above 0.1 g/t Au, is almost 1 km long and from 100-300 m in width. It is located along a flat/plateau-like ridge of residual soils. The northern anomaly, defined by 40 samples with grades above 0.1 g/t Au, is smaller, ~ 300 m by 400 m, and while the soils from this anomaly appear to also be residual, the steeper nature of the slope does mean there may be some downward slope movement of soil.

In both cases these high gold results are associated with regions in which there are gossanous zones of almost completely quartz-sericite-pyrite-replaced rocks.

The southernmost of these anomalies, defined by 80 samples with grades above 0.1 g/t Au, is almost 1 km long and from 100-300 m in width. It is located along a flat/plateau-like ridge of residual soils. The northern anomaly, defined by 40 samples with grades above 0.1 g/t Au, is smaller, ~ 300 m by 400 m, and while the soils from this anomaly appear to also be residual, the steeper nature of the slope does mean there may be some downward slope movement of soil.

In both cases these high gold results are associated with regions in which there are gossanous zones of almost completely quartz-sericite-pyrite-replaced rocks.

Figure 9.3.2_2 shows the two soil sample anomalies at a larger scale with the location of the rock sample results listed in Table 9.3.1_1 shown in relation to the most anomalous gold assays. There is an obvious and close relationship between rock samples and most anomalous values.
This could be a function of the mineralisation outcropping with the lower assays over areas with deeper soils, or the highest soil sample values defined discrete mineralised bodies in the subsoil.

Figure 9.3.2_2
Location of Mineralised Rock Samples Within the Soil Sample Anomalies at the Saddle Target

Figure 9.3.2_3 shows the soil sampling grid in relation to the geology and geomorphology to illustrate the constraints imposed on sampling by the nature of the terrain and by the presence of alluvium/glacial till cover. It indicates that there is potential to extend the Southern Anomaly to the southwest and southeast.
While both gold anomalies are associated with elevated copper (meaning defined by sample results above 50 ppm, yielding an average for the anomaly of more than 150 ppm) there is a particularly striking 250 m by 100 m copper anomaly (11 samples exceeding 500 ppm Cu) that separates these two (Figure 9.3.2.4).
The copper anomaly is spatially associated with mapped chalcopyrite and malachite-bearing quartz-carbonate veining on the ridge above, and to the south. The soils in this anomaly are mixed residual and fines from the scree slope below the cliff face on which these veins are found. It is likely that the copper in this region is from material transported downslope from this veining.

The gold results in the soils are also tied closely with elevated arsenic (Figure 9.3.2_5) and mercury suggesting a higher stratigraphic position for the mineralisation than the Pass Gossan porphyry target, and many veins in the region show signs of being open-space-filling.
Classic epithermal textures, such as those associated with boiling conditions, are not observed. Therefore the target is being tentatively referred to as a mesothermal gold target, pending more specific evidence of temperature and depth of mineralisation.

9.4 Exploration Results for Quash and the Pass Gossan Area

9.4.1 Rock Chip Sampling

The geological mapping program at Quash/Pass Gossan was completed by Emily Miller during the 2012 and 2013 exploration seasons using a Garmin hand-held GPS unit for recording ground stations, and classical “pencil on mylar over imagery” drafting of map elements for later digitising.

Concurrent with geological mapping 34 rock samples were collected for mapping purposes and analysis in 2012 from the Quash/Pass Gossan area, followed by 62 in 2013, and 5 in 2014. Table 9.4.1_1 gives descriptions and assay results of selected anomalous rocks from the Quash/Pass Gossan area.
Table 9.4.1_1
New Chris Minerals Ltd
Description and Assay Results of Rock Samples From the Quash/Pass Gossan Area

<table>
<thead>
<tr>
<th>Area</th>
<th>Lithology</th>
<th>Photo</th>
<th>Sample No.</th>
<th>Au (ppb)</th>
<th>Cu (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quash-Pass Gossan</td>
<td>Highly oxidised and Fe-carbonate altered. Py-bearing. Unknown lithology</td>
<td>Q343514</td>
<td>30</td>
<td>557</td>
<td>531</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heavily altered (ankerite) +/- sphalerite +/- tetrahedrite, cut by carbonate veins, sheared</td>
<td>x</td>
<td>Q343516</td>
<td>2</td>
<td>221</td>
<td>142,500</td>
</tr>
<tr>
<td></td>
<td>Highly mineralised (Py +/- Cpy) intrusive (monzonite?), highly silicified, oxidised</td>
<td>x</td>
<td>Q343522</td>
<td>43</td>
<td>274</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Float: Mineralised quartz vein, very gossaneous</td>
<td>x</td>
<td>Q343544</td>
<td>43</td>
<td>412</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Quartz-sericite-pyrite-galena +/- tetrahydrite alteration and mineralisation in a fine grained, greenish intrusive rock</td>
<td>x</td>
<td>Q344101</td>
<td>60</td>
<td>202</td>
<td>2,890</td>
</tr>
<tr>
<td></td>
<td>Volcanic breccia. Medium grained to coarse grained carbonate-Fe carbonate veining with galena-pyrite +/- malachite +/- chalcopyrite selvedge</td>
<td>x</td>
<td>Q344861</td>
<td>25</td>
<td>41</td>
<td>8,940</td>
</tr>
<tr>
<td></td>
<td>Fe-carbonate, brecciated mudstone – completely altered</td>
<td>x</td>
<td>Q344863</td>
<td>98</td>
<td>573</td>
<td>5,390</td>
</tr>
<tr>
<td></td>
<td>Slide path that contains quartz-carbonate-ankerite veins, nakrite breccias, sediment +/- volcanics. Strongly oxidised with 30-35% coarse grained pyrite, primarily as pyritehedrons</td>
<td>x</td>
<td>Q344864</td>
<td>903</td>
<td>658</td>
<td>44,700</td>
</tr>
<tr>
<td></td>
<td>Notes for sample are missing</td>
<td>Q345401</td>
<td>5</td>
<td>879</td>
<td>402</td>
<td></td>
</tr>
</tbody>
</table>

9.4.2 Soil Sampling Results

During 2012 a reconnaissance survey of 637 soil samples was undertaken in the Quash/Pass Gossan region of the Property. In 2013 an in-fill sampling programme of 1,384 samples was undertaken over the anomalous areas delimited in 2012 with line spacing ranging from 100 m to 200 m, and sample spacing ranging from 50 m to 100 m. Sampling procedures and quality control are described in Section 11 below.

Figure 9.4.2_1 presents soil sample copper assay results and illustrates\(^1\) that soils in the Quash/Pass Gossan area show a 1,200 m by 200 m copper anomaly (100 adjacent samples with >150 ppm Cu, including 8 samples >500 ppm Cu) trending along the north-facing plateau edge to the northwest of the Pass Gossan Minfile occurrence, coincident with a monzonitic intrusion close to the mapped Stuhini/Hazelton contact.

\(^1\) For the evaluation of soil sampling results, seven different colour (cold/low to warm/high) thresholds for each element plotted were set to approximately double for each colour change, this being an effective first-pass method for pattern and anomaly recognition in trace element soil and stream sediment data, which usually has a positively-skewed value distribution, provided the first threshold is appropriately chosen for each element. The first threshold for each element discussed in this report was chosen after examination of the element’s histogram, in conjunction with histograms of its distribution in British Columbia stream sediments available on the www.rockstorichesbc.com/gpage.html website.
The map also shows the constraints imposed by the terrain on sampling the area south of the main anomaly.

This anomaly is coincident with a soil gold anomaly of 20 ppb to 250 ppb (Figure 9.4.2.2), as well as with soil zinc (Figure 9.4.2.3) and lead (Figure 9.4.2.4) anomalies. It should be noted that this multi-metal anomaly is as extensive in area and of similar tenor to the soil anomalies documented over the Cu/Au porphyry deposits for which resources have been reported on properties immediately adjoining the Tatogga Lake Property.
Figure 9.4.2_2 presents soil sample zinc assay results and illustrate that soils at Quash show a 400 m by 300 m zinc anomaly (150 to 2,000 ppm Zn) one kilometre west-southwest of the Quash/Pass Gossan copper anomaly.

The Quash zinc anomaly is coincident with similar-sized lead (Figure 9.4.2_4) and silver anomalies, and is supported both internally and externally by scattered anomalous levels of copper and gold (Figures 9.4.2_1 and 9.4.2_2).
9.4.3 **Quash/Pass Gossan Prospect Geophysics**

A Volterra-3D ground IP survey was completed by SJ Geophysics (Polutnik, 2014) over the defined Quash/Pass-Gossan copper/gold target as well as the Quash Pb-Zn Prospect to the south. The lines were set at a spacing of 200 m with stations every 100 m along the lines. With the melting of snow the ground was well saturated with water and excellent contact was reported by the survey team.

Figure 9.4.3_1 shows the location of the IP survey lines and reading points. The lines in the southwest cover Quash and the more northerly lines Quash/Pass-Gossan.
Figure 9.4.3.1 shows selected depth slices through the chargeability inversion results, and Figure 9.4.3.2 shows the resistivity inversion results – in both cases, overlain by Cu and Zn soil sample result contours.
Figure 9.4.3_2
IP Chargeability Results Interpreted at 50 Metre Depth

IP Chargeability Results Interpreted at 100 Metre Depth

IP Chargeability Results Interpreted at 200 Metre Depth
Figure 9.4.3.3
IP Resistivity Results at 50 Metre Depth

IP Resistivity Results at 100 Metre Depth

IP Resistivity Results at 200 Metre Depth
The Pass-Gossan Cu target was found to be an area of low chargeability, whereas the lead-zinc Quash target appears to overlie a region of high chargeability (defined as >20 ms). A second highly chargeable target appears on the eastern edge of the grid extent beneath high levels of gold, zinc and copper in the soil. SJ Geophysics has confirmed that after close examination of the raw data, this is a real chargeability feature as opposed to an edge effect. However, due to the position on the edge of the grid, SJ's geophysicists caution that the actual source of the anomaly could be slightly off of the grid and that the exact location of the anomaly has a low certainty. An extension of the survey is needed to correct this uncertainty.

Final interpretation of the chargeability results are still outstanding with the high chargeability underlying the Quash anomaly and at the eastern edge of the grid possibly representing a sulfide-rich/pyritic halo around near surface mineralisation, or representing a more deeply rooted mineralisation that is not apparent at surface.

The resistivity results show a contrast between the lower resistivity Hazelton rocks to the north of the Quash/Pass Gossan target, and the relatively higher resistivity Stuhini Group south of the Pass Gossan target.

Figure 9.4.3_4 shows the results of the conductivity (top) and chargeability (bottom) measurements along N-S cross sections superimposed onto the geology.
It may be that some of the lower chargeability areas in the more resistive zones are the better drill targets than the higher chargeability zones, which may be more pyritic halos.
9.5 Exploration Results for the Valleyside Gold Target

The Valleyside Gold target was discovered by soil sampling, although evidence of the target exists in a historical line of ridge samples which are part of the anomaly, and which reached 80 ppb Au.

Grid soil sampling over the 600 m wide Valleyside gold target has, to date, been conducted at a line spacing of 100 m and a sample spacing of 50 m. Figure 9.5.1 shows the gold assay results, which define a 600 metre long anomaly situated 1.2 kilometres south-east of the Pass Gossan mineral occurrence, open both to the east and to the west. Three adjacent samples reported above 300 ppb Au over a 50 m by 100 m sampling area. Along the western-most line a maximum level of 918 ppb Au is reported and 111 ppb Au is the maximum in the eastern-most line.

The anomaly falls in an area of Stuhini Group rocks, Red Chris Suite intrusives and Quaternary cover, based to the geological map of Ash et al (1996). It has yet to be mapped in detail by NCM. The Quaternary cover, possibly present over most of the anomalous grid lines, may explain the somewhat discontinuous nature of the anomaly, line to line.

The anomaly is strongly supported by arsenic (Figure 9.6.2), which reaches 2,640 ppm in the highest gold sample. Arsenic also delimits an anomaly of similar size on the northern side of the valley, where scattered anomalous gold values (50 – 100 ppb) are also present.
Enhanced zinc (Figure 9.6.3) is also present in anomalous levels on both sides of the valley.
10 DRILLING

Not applicable
11 SAMPLE PREPARATION, ANALYSIS AND SECURITY

11.1 Sampling Procedure

Soil sampling consisted of both detailed grid work where sample site locations were chosen beforehand, and reconnaissance lines where contours or other topographic features were followed and samples were taken at regular intervals in order to cover large areas of the Property. In both cases samples were, on occasion, moved off of the contour line or skipped entirely to account for drainages, outcrops, dangerous terrain and snow.

The nature of the soils in the area was such that the soils were often very poorly developed and were frequently very rocky. Consequently, in order to minimise contributions to the sample of transported and organic material, collection aimed to be as deep as possible. In practice, this meant that most samples were collected between 30cm and 40cm depth, corresponding to A, B, or C horizons, depending on the geomorphology of the area. In some areas, only talus was available for collection. A 10mm sieve was used in the field to ensure sufficient fine material was sampled to yield at least 40 grams of -200 mesh material for analysis. Care was taken to note the soil horizon sampled, when sieves were used, the proportion of the soil that was oversize, and any geomorphological features that may affect sampling or results such as the presence of a moraine or drainage.

Depending on the nature of the soil, sampling was completed primarily with an auger or by digging a soil pit, sometimes supplemented with a geotool depending on the rockiness at the sample site. Soil bags were filled with as much sample material as was possible. Soil bags were all labelled clearly in permanent marker on both sides of the bag with sample number while the tyvek sample tags were inserted directly into the sample bag.

Soil samples were laid out on a tarp to dry prior to shipment. While there were a couple shipments that were sent while the samples were still damp, care was taken to ensure that they were not so damp as to be in danger of damage during transit and the number of samples per shipping bag was adjusted down to prevent sample damage.

For shipping, soil samples were put in order of sample numbers and tied together in groups of 10 on loops of twine or secured within large polybags to reduce the amount of movement within the rice bags and to ensure that receiving on the lab’s end was smooth.

Samples were batched weekly and recorded by the geologist in charge of the camp and were sealed, flown out of camp by helicopter. They were either immediately taken to Smithers by Rugged Edge Holdings Ltd. trucks to be shipped directly to the Vancouver ALS lab by Bandstra or were stored in a locked Seacan in Iskut until the next truck to Smithers was scheduled. There were occasions that necessitated the storage of these bags, on pallets, in the Rugged Edge Warehouse for short periods of time before they could be delivered to the Bandstra shipping office.

In 2013, one soil sample shipment was reported by the laboratory as damaged with several samples (H218466-67, H218463, H218477- H218480) destroyed or lost due to the piercing of one of the rice bags. From the documentation photos sent by the lab (Figure 11.1_1) it appears that the damage may have been caused by a forklift.
It could not be established when and where this occurred (during Bandstra Shipping or when received at the laboratory).

11.2 Soil Sample Preparation and Analysis

After receiving the samples the soils were dried by the lab and screened to -200 mesh, as per special direction. This ensures that the analysed portion of the sample had high clay content and thus, despite the fact that many of the samples are from less than ideal sample locations the clays should still have captured the mobilised ions.

The samples were analysed using ALS Chemex's TL42-PKG analysis package, consisting of ME-MS41 and Au by Aqua Regia with ICP-Finish. ALS Chemex is an ISO- accredited laboratory independent of New Chris Minerals and of Manera. This package gives 41 elements through aqua regia digestion of a sample of 15g nominal weight followed by inductively coupled plasma-atomic emission spectroscopy (“ICP-AES”) and inductively coupled plasma-mass spectroscopy (“ICP-MS”) analyses while the additional gold ICP analysis allows a much lower detection threshold for gold.

No extra quality assurance – quality control (“QAQC”) samples were added at this early stage of exploration, but the lab-provided QAQC sample information has been incorporated into NCM database.
11.3 Rock Sample Preparation and Analysis

Rock samples were taken for several purposes, but predominantly where visible mineralisation, veining or alteration indicated a zone of interest, while others were taken as hand samples or for investigation of the geochemistry of the less altered/mineralised rock.

All sample sites were located with a GPS, and described in the field. Samples were assigned a name based on the GPS point. Upon returning to camp rock sample cards were filled out, a tyvek sample tag and number were assigned to the samples that were selected for the lab and representative hand samples for photography and a rock library were selected. The sample number was written in permanent marker on either side of the plastic sample bags and one tyvek sample tag was placed in the bag and another with the same number and barcode was stapled to the top of the bag for easy scanning when received by the laboratory.

All rock samples were sent to ALS Chemex for analysis. Rocks were dried, crushed to a screen of 2mm before a split of up to 1000 grams was taken and pulverized to a -200 mesh screen. The samples were analysed using ALS Chemex's TL44-PKG analysis package, consisting of ME-MS41 and Au by Aqua Regia with ICP-Finish. This package gives 41 elements through aqua regia digestion of a sample of 50 g nominal weight followed by ICP-AES and ICP-MS analysis while the additional gold ICP analysis allows a much lower detection threshold for gold.

No extra QAQC samples were added at this early stage of exploration but the lab-provided QAQC sample information is being incorporated into our database.

11.4 Appropriateness of Sample Preparation and Security and Analytical Procedures

It is the author's opinion that the sample preparation, security and analytical procedures adopted by New Chris Minerals and described below were adequate for the purposes of achieving high quality exploration goals.
12 DATA VERIFICATION

12.1 Introduction

The services of the first author (C.A. Dekker) were initially retained in 2013 for by the owners of this project for the purpose of preparing a NI 43-101 report on the property upon completion of the 2013 exploration programme. Spot checks were carried out in 2013 by Mr Dekker for a number of anomalous soil sample locations in the Saddle Area. Mr Dekker was again retained in 2016 to supervise the compilation of this report.

The services of the second author (C. P. Smyth) were retained by the owners of this project for the purpose of validating the work completed on the property in 2014, after the visit of the first author. No work was conducted on the property in 2015 and 2016.

12.2 Field Verification – Pre-2014

Figure 12.2_1 shows the helicopter traverses made over the Property by the first author.

The traverse illustrates that the Ash and Central area were overflown and that particular attention was given to the Saddle area where the most promising soil sampling results were obtained. Given weather and time constraints the Saddle area was the only area where sample locations were verified. As the soil was already frozen conditions for sampling were such that only one duplicate soil sample was taken.

Table 12.2_1 gives details of the check sample results.
Table 12.2.1
New Chris Minerals Ltd
Summary of Sample Verification Carried Out

<table>
<thead>
<tr>
<th>Sample</th>
<th>Coordinates</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latitude</td>
<td>Longitude</td>
</tr>
<tr>
<td>H215755</td>
<td>57.811605</td>
<td>-130.115</td>
</tr>
</tbody>
</table>

Figure 12.2.2 shows the traverses that were walked in the Saddle area to inspect sample sites, verify GPs coordinates, sample depth and proper marking and to look at the geology.

Figure 12.2.3 shows photos of a number such locations.
Figure 12.2.3
Location of Two Adjacent Soil Sample Locations at the Saddle Area
Sample: H215752

Sample: H215755; Check Sample: Q344401
Figure 12.2_4
Location of Two Other Soil Samples at the Saddle Area
Sample: Q345224

Sample Q345223

The first author is satisfied that the data in this report is adequate for the purposes of the report.
12.3 Field Verification - 2014

Verification of the soil gold and copper anomalies discovered at Saddle in 2013 was carried out in 2014 as infill sampling on the 2013 sampling grid in the area of anomalous samples. All this sampling was carried out under the supervision of NCM geologist, Emily Miller, with oversight by the second author (C. P. Smyth). All 2014 results correspond very well with the 2013 results, as shown in Figure 12.3_1.

![Comparison of the 2013 (Top) and 2014 (Bottom) Soil Sample Results at the Saddle Target](image-url)
The second author also confirmed sites of gossanous outcrop within the areas of the soil gold anomalies, and inspected the 2014 field operations of SJ Geophysics during their IP survey over the Quash-Pass Gossan prospect, as shown in Figure 12.3_2.

12.4 Field Verification – 2016

No work was carried out on the Tatogga property in 2015, and no visits were made to the property.

The second author spent the period 27 July to 1 August 2016 on the Tatogga property, visiting both the Saddle and Quash/Pass Gossan exploration target areas to carry out orthophotography surveys. No material changes were observed anywhere on the property in respect of its exploration status in 2014.

The second author is satisfied that the data in this report is adequate for the purposes of the report.
13 MINERAL PROCESSING AND METALLURGICAL TESTING

Not applicable

14 MINERAL RESOURCE ESTIMATES

Not applicable.

15 MINERAL RESERVES ESTIMATES

Not applicable.
16 ADJACENT PROPERTIES

16.1 Introduction

The Tatogga Lake Property is surrounded on three sides by significant porphyry copper exploration projects and is approximately 14 km west of the Red Chris Porphyry Cu/Au Mine (Figure 16.1_1).

16.2 Skeena Resources Limited’s GJ Property

The GJ Property adjoins the Property to the southwest, and is an area of about 150 square kilometres (Figure 16.1_1). It covers a number of significant mineral showings, including the Donnelly, GJ and North zones.

The GJ deposit has a NI.43-101 compliant Measured and Indicated resource of 133 million tonnes grading 0.32% copper and 0.36 g/t gold, at a cutoff grade of 0.20% copper which contains
0.94 billion pounds of copper and 1.56 million ounces of gold (Peatfield et al, 2016). The authors have been unable to verify this information, which is not necessarily indicative of mineralisation on the property, which is the subject of this technical report.

Peatfield et al included in their 2016 report a review of all historical soil sampling carried out over and around the GJ deposit. Figures 16.2_1 and Figure 16.2_2 show plots of respectively copper and gold values in soils over the GJ deposit, which were extracted from this report, but were not verified by the authors. While the anomalous GJ copper and gold levels reach somewhat higher levels than those at the Quash/Pass Gossan prospect, they are of approximately the same areal extent as the anomalous soil samples at Quash/Pass Gossan. They are, however, not necessarily indicative of the mineralisation that is the subject of this technical report.

![Figure 16.2_1](image)

Figure 16.2_1

Cu Assay Results of Soil Samples at the GJ Prospect

![Figure 16.2_2](image)

Figure 16.2_2

Au Assay Results of Soil Samples at the GJ Prospect
16.3 Colorado Resources North ROK Property

Colorado Resources Ltd’s North ROK property abuts the north east boundary of the Tatogga Lake Property, and covers 5,188 hectares (Figure 6.1). In April, 2013, Colorado announced the results of borehole NR13-001 drilled on the Mabon mineral occurrence within the North ROK property, which returned 242 metres @ 0.63% copper and 0.85g/t gold, a result which has not been verified by the authors of this report, and which may not be indicative of the mineralisation that is the subject of this technical report.

Since that time, Colorado has diamond drilled another 11,000m of core, intersecting copper over a 900m strike length. The company has determined that the chargeability anomaly that hosts the copper-gold porphyry mineralisation at the Mabon Zone measures up to 1,300m wide by at least 2,000m long and is cored by a zone of high magnetic intensity that is up to 400m wide and 1,200m long. The mineralisation is within Upper Triassic Stuhini Group volcanic rocks intruded by early Jurassic monzonitic rocks.

On 27 January 2014 Colorado announced a maiden NI 43-101-compliant Inferred Resource (Giroux, 2014) for North ROK as reproduced in Table 16.3.1. The authors have not been able to verify this information, which is not necessarily indicative of the mineralisation on the Property that is the subject of this report.

<table>
<thead>
<tr>
<th>Cut-off Grade % Cu Eq</th>
<th>Amount ('000 tonnes)</th>
<th>Grade % Cu</th>
<th>g/t Au</th>
<th>% Cu Eq</th>
<th>Contained Metal tonne Cu</th>
<th>ozs Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>205,060</td>
<td>0.18</td>
<td>0.21</td>
<td>0.31</td>
<td>369,000</td>
<td>1,384,500</td>
</tr>
<tr>
<td>0.20</td>
<td>142,300</td>
<td>0.22</td>
<td>0.26</td>
<td>0.37</td>
<td>313,100</td>
<td>1,189,500</td>
</tr>
<tr>
<td>0.25</td>
<td>96,600</td>
<td>0.26</td>
<td>0.31</td>
<td>0.44</td>
<td>251,200</td>
<td>962,800</td>
</tr>
</tbody>
</table>

Colorado’s September 2013 Corporate Presentation presents the clearest rendition of the company’s soil sampling results over and around the North ROK discovery (Colorado Resources Ltd., 2014). These are reproduced in Figure 16.3.1 showing that the highest Cu grade category has been defined as exceeding 295 ppm. The authors have not been able to verify this information, which is not necessarily indicative of the mineralisation on the property that is the subject of this report.
From their copper results (Figure 16.3.2) it appears that the copper anomaly associated with their drilled resource is of an equivalent or lower tenor than NCM’s Quash/Pass Gossan soil copper anomaly, over a shorter strike distance. The reported soil gold results (Figure 16.3.3) with highest grade category assays exceeding 40ppm are clearly less anomalous than NCM’s results.
Figure 16.3.2
Au Soil Sample Results On North ROK Project
16.4 West Cirque Resources Castle Property

West Cirque Resources Ltd’s Castle property is situated approximately 500 metres from the north west boundary of the Tatogga Lake Property, and covers 1,033 hectares (Figure 6_1). The property covers a 5.5 kilometre long alteration zone associated with gold-silver-copper mineralisation. It is currently under option to Freeport-McMoRan Copper & Gold Ltd.

The Castle property is underlain by Jurassic volcanic rocks of the Hazelton Group, comprising mainly andesitic flows, breccias and tuffs, and lesser rhyolite. The volcanics are intruded by a variety of intrusive rocks. The dominant rock type encountered in drilling is a variably altered, monzonitic-monzodioritic porphyry. The porphyry contains 30%-40% variably sericite-carbonate altered feldspar phenocrysts averaging 2mm-3mm size, and 10%-15% variably chlorite-sericite altered hornblende phenocrysts. No quartz phenocrysts have been observed, suggesting an alkalic composition.

Mineralisation consists of abundant vein-related and disseminated pyrite and gold, chalcopyrite in veins and with hematite after magnetite, and moly in veins and on fracture surfaces. Pyrite ranges in concentration from trace amounts to massive sulfide but is ubiquitous throughout the monzodiorite porphyry. Several sets of stockwork-veining are widespread.

Three diamond holes totalling 1,859 metres were drilled at Castle in 2013, the best of which (CA13-01) yielded 0.10% Cu and 0.28g/t Au over 274 metres (14m -274m) and 0.15% Cu and 0.41 g/t Au over 26 metres (456m to 482m) (Bradford, 2012). The authors have not been able to verify this information, which is not necessarily indicative of the mineralisation on the property that is the subject of this report.

16.5 Imperial Metals Red Chris Mine

The Red Chris porphyry copper-gold deposit is situated approximately 20 kilometres to the south west of the Tatogga Lake Property (Figure 4).

At a 0.3% Cu cutoff, Red Chris has a NI.43-101 compliant Measured and Indicated resource of 312 million tons at 0.54% Cu and 0.55g/t Au, with a further 237 million tonnes of Inferred resource grading 0.46% Cu and 0.5g/t Au (Gillstrom, 2010). The authors have not been able to verify this information, which is not necessarily indicative of the mineralisation on the property that is the subject of this report.

Construction of the Red Chris mine was completed and the mine was commissioned in 2015. The Red Chris porphyry copper-gold deposit is distributed along the central axis of a pervasively altered and fractured formation called the Red Stock (Gillstrom & Robertson, 2010). This stock is texturally diverse and variably porphyritic, with multiple internal contacts, and it is better regarded as suite of dike-like intrusions instead of a single homogeneous body. The composition of the phases is dominantly monzodiorite with minor quartz monzodiorite or monzonite, and they were probably emplaced in a relatively short period from a single magmatic event. The Red Stock itself is the predominant host of the mineralisation. Mineralisation and associated alteration are more intense adjacent to the ancestral en echelon fault system along the axis of the stock which controlled the emplacement of the stock and later altering and mineralising hydrothermal fluids, which is more typical of a shear-hosted copper-gold deposit. The Red-Chris copper-gold mineralisation has good near-vertical and longitudinal continuity, controlled largely by post-
mineral faulting superimposed on and along the ancestral, en echelon, central axis fault zone. Pyrite, chalcopyrite, bornite, with minor chalcocite are the principal sulphide minerals of the shallower portions of the Red Chris deposit. Minor covellite occurs as inclusions in pyrite, and molybdenite, sphalerite and galena occur locally in trace amounts. Gold, second in economic importance to copper, occurs spatially and genetically associated with the copper mineralisation.
17 OTHER RELEVANT INFORMATION

17.1 Other New Chris Minerals Properties Near Tatogga Lake

In the Klastline area NCM is also responsible for two small satellite properties, Ginside and Gambit, consisting of single claims to the east of the Alaska Highway.

Figure 17.1.1 shows the location of the two prospects and assays from samples taken.

![Figure 17.1.1 Location of the Gambit and Ginside Prospects](image)

These claims are staked on the basis of Minfile occurrences and have had minimal exploration work completed. The first work completed directly on the claims was completed in September at the end of the 2013 season by NCM.

The Gambit property is staked in proximity to the Plateau and B31 Minfile Occurrences and is accessible by a reasonably well-maintained gravel road providing access to Ealue Lake and the
railway along the Klappan River. The B31 occurrence is a sample taken by the British Columbia Geological Survey in 1994 of a 5cm-10cm sulfide-rich area in megacrystic syenite that assayed 0.34% Cu (Open File 1997-3). Subsequent work includes a 2011 9.3 line-km ground magnetic survey and reconnaissance prospecting, but this work did not extend onto the NCM's claim block. The Plateau Occurrence is a 3m by 5m chalcopyrite mineralised area in polymictic volcanic lapilli tuff breccia that returned copper up to 2% and silver up to 71 g/tonne (Fieldwork 1994). Subsequent work includes chip sampling in 20120 by Brett Resources Inc. yielding elevated copper values up to 0.28% (Assessment Report 31817).

During the 2013 field season over the course of two days a total of 83 widely-spaced soil samples (400 m spaced lines with 100 m sample intervals), as well as 3 silt samples were taken and the, very limited, rock exposure was examined. Most of the soil samples were relatively low to background with scattered results of above 80 ppm Cu. And one line with 200m (3 samples) over 110 ppm including one sample at 1,110 ppm. The silt sample taken upstream from this sample was background while the two stream samples downstream returned 86.7 ppm and 151.5 ppm respectively and correspond with a single anomalous (84 ppm Cu) soil sample in the furthest east line. Unfortunately the streams within the property were high energy and strongly erosive making it difficult to find suitable sampling points.

The Ginside property is staked on a colour anomaly to the south of the Gin Minfile Occurrence and approximately 6km to the southwest of the Red Chris deposit. It is currently accessible only via helicopter. The Gin Minfile Occurrence is underlain by Lower Jurassic Hazelton and Upper Triassic Stuhini Group sediments and andesitic flows with an east-trending Early Jurassic dioritic stock. Mineralisation is characterised by widely scattered narrow pyrite veins with trace chalcopyrite, arseonpyrite and rare galena and sphalerite samples, which have returned up to 1.24 g/tonne Au and 45.1 g/tonne Ag. Exploration for copper porphyry around Gin has continued off and on from the 1970s to the present day.

In 2013 a single day was spent on the Ginside property during which time a total of 61 widely spaced soil (500m spaced lines with 100m sample intervals), 7 rock, and 4 silt samples. Two silt samples from near the geneses of two first order streams in the eastern portion of the property returned anomalous (above 85 ppm) copper. The soils returned low to background with the most consistently low, but anomalous (above 80 ppm) samples being returned from the central to eastern-most lines. Rock samples taken on the property were low, with one returning 88.5 ppm Cu. One sample 200 m to the south of the property boundary returned 747 ppm Cu.
18 INTERPRETATION AND CONCLUSIONS

18.1 General Observation

The authors have not identified any significant risks or uncertainties in the information presented in this report, which could reasonably be expected to affect confidence in or reliability of the report.

18.2 Project Area

The project area is located in a terrane, which has a long geological history of great diversity with several stages of basin and arc formation, resulting in development of considerable mineralisation of diverse metallogeny.

The Property is underlain by three, and possibly four distinct successions of volcanic and volcanogenic sedimentary rocks – the Stuhini Group, the Hazelton Group, possibly the Bowser Group, and the Mount Edziza Volcanic Complex.

The large extent of Upper Hazelton Formation on the Property makes it prospective for VMS deposits and the large extent to which the Stuhini/Hazelton unconformity, in association with intrusive rocks, is present on the Property is supportive of potential porphyry gold/copper and porphyry-related gold mineralisation, based on the “Transitional Meso-to-Epithermal Stockwork Gold” model developed by Pretivm Resources Inc. for their Brucejack gold deposit. This does not provide any assurance that a mineral deposit exists on the property.

Significant anomalous assays for rock samples and soil samples were obtained from two areas, the Saddle Target area, and the Quash/Pass Gossan Target Area, which require follow-up work. To support this follow up work, NCM has access to its Property-wide airborne magnetics and EM survey results, which have not shown any obvious anomalies, but have not yet been interpreted in detail around these geochemical anomalies.

Less than 30% of the Property has been subjected to soil geochemical prospecting and anything but regional mapping by the BC Geological Survey. NCM experience in the Saddle area suggests that soil geochemical sampling of the balance of the Property will yield additional targets.

Detailed analysis of the results of the airborne geophysical surveys carried out by NCM has not yet been undertaken in the Pass Gossan and Saddle areas. It is recommended that such analysis be undertaken in the light of the latest mapping, soil and rock geochemical results.

18.3 The Saddle Target Area

The exploration strategy of NCM is based on the Brucejack model for porphyry-related gold mineralisation based on proximity to the Stuhini/Hazelton unconformity. The Saddle area is characterised by numerous contact zones between Stuhini and Hazelton units.

Geological mapping has encountered completely quartz-sericite-pyrite altered rock with numerous outcrops of gossanous material. The nature of mineralisation is not yet understood, but there are indications that it is related to relatively large (i.e. 10 cm - 30 cm) malachite + chalcopyrite-bearing quartz-carbonate veins that are present to the north of the gossans and
appear to be syn- or post-deformation and which are oriented roughly parallel to the dominant shearing directions measured across the whole area - approximately 215°/80° (dip, direction/dip).

At the Saddle area two particularly strong gold with associated copper anomalies have been defined which have the same trend as the shearing direction. The northern anomaly is a 300 m by 400 m anomaly of gold levels above 0.1 g/t Au (with four assays in excess of 1 g/t Au). The other anomaly, approximately 800 m southwest from the first, is almost 1 km long and between 100 m to 300 m wide, with in general higher assay values than the northern anomaly.

In both cases these high gold results are associated with regions in which there are gossanous zones of almost completely quartz-sericite-pyrite-replaced rocks.

Associated with the anomalous gold are elevated copper values (on average >150 ppm), but there is a particularly striking 250 m by 100 m copper anomaly (>500 ppm with most results >1,000 ppm) in the area between the gold anomalies.

18.4 The Quash/Pass Gossan Area

In this area two different targets have been identified through soil sampling, Cu/Au mineralisation and Zn-Pb-Ag mineralisation.

Soil and rock samples define a 1,200 m by 200 m copper anomaly (150 ppm to >500 ppm), trending along the north-facing plateau edge to the northeast of the Pass Gossan occurrence, coincident with a monzonitic intrusion close to the mapped Stuhini/Hazelton contact. This anomaly is coincident with a soil gold anomaly of 20 ppb to 250 ppb, as well as elevated zinc and lead assays.

One kilometre to the west-southwest of the Pass Gossan anomaly a very strong 400 m by 400 m zinc, lead, silver soil anomaly is present at the Quash mineral occurrence. Elevated levels of these elements occur erratically in the soil for a considerable distance away from the anomaly centre, and throughout the area lying between Quash and Pass Gossan. These elevated metal levels are entirely consistent with the kind of geochemical halo one would expect to find surrounding a copper/gold porphyry deposit, which may underly the Pass Gossan Cu/Au soil anomaly.

The areal extent and tenor of the soil copper and gold anomalies associated with the intrusives at the Quash/Pass Gossan are equivalent to or greater than the anomalies associated with the two copper/gold porphyry deposits immediately adjacent to the Property – namely the GJ and North ROK deposits. This does not provide any assurance that a mineral deposit exists on the property. The anomalous values at Quash show a greater consistency than is apparent from both the GJ and Colorado maps and with the highest assays outlining a coherent zone exceeding 500 ppm Cu, whereas for GJ this is >57 ppm and for North Rock >190 ppm. This does not provide any assurance that a mineral deposit exists on the property.

For these reasons, the Quash/Pass Gossan soil anomaly is considered a very promising copper/gold porphyry deposit drilling target.

The Quash/Pass Gossan area also clearly possesses potential for epithermal gold deposition, as exemplified by the gold-only Valleyside anomaly situated 1.2 km along strike to the south-east of
the Pass Gossan. Three adjacent samples reported above 300 ppb Au over a 50 m by 100 m sampling area.
19 RECOMMENDATIONS

19.1 Project Area

NCM has been able to identify a number of areas within the greater Tatogga Lake project area, which are of particular interest. The focus has been on geophysical and geochemical surveys, supported by mapping of the lithology. From the field visit it was apparent that structure could be an important control to emplacement.

19.2 The Saddle Target Area

The results at the Saddle area seem to be the most attractive and the area should receive at this stage the most attention, in particular as it has historically never been explored in detail.

Figure 19.2_1 shows copper mineralisation in the north portion of the Saddle area in a NW striking structure, which is parallel to the structural grain of the area.

The soil sample anomalies for both gold and copper seem to follow this trend.

As there has not yet been a mapping exercise to specifically determine any structural control on the mineralisation, it is recommended that a structural map be generated to place the location of encountered mineralisation and alteration in the context of structural controls. This should be
carried out in preparation of a borehole programme to assist in determining the location, azimuth and dip of the various boreholes.

The porphyry copper potential needs to be further explored to the south and south-east of the cluster of rock outcrop samples highly anomalous in copper – an area which, according to historical records, has yet to be sampled, or mapped in detail.

19.3 The Quash/Pass Gossan Area

The anomaly around the Pass gossan is well-defined and seems to be associated with the Stuhini-Hazelton contact. Whereas it constitutes an immediate drill target, there is a possibility that the extent of the soil anomaly is overstated down hill and that the source may be a relative narrow horizon of mineralisation.

Drilling should be designed to:-

- delineate the true thickness of near-surface mineralisation;
- gain structural/geological information about mineralising controls;
- test deeper continuation, and
- establish possible broadening of intrusive bodies thought to host the mineralisation or ideally identify a larger mineralised stock/pluton from which the more limited in volume dykes come.

The base metal soil anomaly at the Quash gossan area south of the Pass gossan is well-defined and also constitutes an immediate drill target. Trenching results by Ascot Resources in 1991 concluded that the probable source for the soil anomaly are sphalerite, galena and pyrite mineralised iron-carbonate stringers, veinlets and fracture in-fillings. Minor amounts of disseminated fine grained galena, and possible sphalerite, hosted within the light green siliceous siltstone unit were observed, and considered a secondary, lesser source of the base metal geochemical anomaly. Although the assays of the trench samples were sub-economic, the target warrants some drilling to verify whether grades improve with depth.

19.4 Scope of Recommended Exploration and Cost Estimate

Table 19.4_1 sets out the recommended scope and budget for the next stage of exploration.
<table>
<thead>
<tr>
<th>Target</th>
<th>Activity</th>
<th>Scope</th>
<th>Rate (C$/unit)</th>
<th>Amount (C$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saddle</td>
<td>Structural Mapping</td>
<td>One month</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>Drilling and Assaying - Initial</td>
<td>40 holes for 2,000m</td>
<td>150</td>
<td>300,000</td>
</tr>
<tr>
<td></td>
<td>Sub-total Saddle Area</td>
<td></td>
<td></td>
<td>315,000</td>
</tr>
<tr>
<td>Quash/ Central</td>
<td>Structural Mapping</td>
<td>One month</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>Drilling and Assaying - Initial</td>
<td>20 holes for 2,000m</td>
<td>150</td>
<td>300,000</td>
</tr>
<tr>
<td></td>
<td>Sub-total Quash/Central Area</td>
<td></td>
<td></td>
<td>315,000</td>
</tr>
<tr>
<td></td>
<td>Camp/Labour/Support Services</td>
<td></td>
<td></td>
<td>450,000</td>
</tr>
<tr>
<td></td>
<td>Supervision and Reporting/Miscellaneous</td>
<td></td>
<td></td>
<td>75,000</td>
</tr>
<tr>
<td></td>
<td>Sub-total</td>
<td></td>
<td></td>
<td>1,155,000</td>
</tr>
<tr>
<td></td>
<td>Contingency – 20%</td>
<td></td>
<td></td>
<td>231,000</td>
</tr>
<tr>
<td></td>
<td>Total Budget</td>
<td></td>
<td></td>
<td>1,386,000</td>
</tr>
</tbody>
</table>

The total budget excludes any provision for corporate support services and activities.

Whereas the Saddle target and Quash/Gossan target can both be considered immediate drill targets, they stand to benefit from a dedicated structural mapping exercise to plan the location and azimuth/inclination of the various boreholes.

As the initial drilling programme should be directed to gain a better understanding of the nature and controls of the mineralisation, the holes should be relatively short and cover the full extent of the anomalies. At Saddle, given the strong geochemical anomalies in the soil samples, the proposed average depth of 50 m of the holes is shorter than the proposed average depth of 100 m at Quash/Gossan.
REFERENCES

Board, W., 2013. Brucejack Bonanza-Grade Gold Project, BC. s.l., s.n.

Colorado Resources Ltd., 2014. Exploration Projects - Red Chris Area, BC. Corporate Presentation (September, 2014), s.l.: s.n.

Pretium Resources Inc., 2013. Pretium Resources Inc.: Mineral Resource Estimate Adds Measured Gold Resources, Increases Grade at Valley of the Kings. s.l.:s.n.

DATE AND SIGNATURE PAGE

This Report Titled “Technical Report on the Tatogga Lake Copper/Gold Project, British Columbia, Canada” for New Chris Minerals Inc.” effective date 12 August 2016 was prepared and signed by the following authors:

Cornelis A Dekker MSc, BCom, MBA, Pr. Sci.Nat

Clinton P. Smyth MSc, P. Geo
CERTIFICATES OF QUALIFIED PERSONS

I, Cornelis Adriaan Dekker, do hereby certify that:

1. I am a consulting geologist and mineral economist currently residing at 44 Kasteel Street, Windhoek, Namibia.

2. I am a graduate of the University of Utrecht, the Netherlands with a Master of Sciences (MSc) in Earth Sciences (1979), a BCom from the University of South Africa and a MBA of the University of Cape Town, South Africa.

3. I have over 10 years of direct experience with precious and base metals mineral exploration in Africa and Latin America including project evaluation and management. Additional experience includes the completion of various National Instrument 43-101 (“NI 43-101”) technical reports for coal, precious metal and base metal projects.

4. I am Registered Professional Geoscientist (#400236/06) of the South African Council for Natural Scientific Professions.

5. I have read the definition of “qualified person” set out in National Instrument 43-101 (NI 43 101) and certify that by reason of my education, professional affiliation, and past relevant work experience, I fulfil the requirement to be an independent qualified person for the purposes of NI 43-101.

6. I supervised the preparation of the report entitled Technical Report on the Tatogga Lake Gold/Copper Project, British Columbia, Canada” dated the 12 August 2016, and am responsible for the content of this report, including the conclusions reached and the recommendations made.

7. I visited the Property on 2-3 October 2013 in order to take carry a thorough reviewed of all available exploration data on the Property and confirm sampling approach and procedure of soil and rock samples in the project area.

8. As of the date of the certificate, to the best of the qualified person’s knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.

9. I am independent of the issuer as described in Section 1.5 of National Instrument 43-101 and I am independent of the vendor of the property which is the subject of this report.

10. I have read National Instrument 43-101 and Form 43-101 F1, and this report has been prepared in compliance with NI 43-101 and Form 43-101 F1.

11. I consent to the filing by Manera Capital Corporation of the Technical Report with any stock exchange and other regulatory authority and any publication by them, including electronic publication in company files on websites accessible by the public, of the Technical Report.

Dated this 12th day of August 2016.

__
Signature Cornelis A. Dekker, MSc, BCom, MBA, Pr. Sci.Nat.
I, Clinton Paul Smyth, do hereby certify that:

1. I am President of Georeference Online Ltd and my office address is Suite 301, 850 West Hastings Street, Vancouver, British Columbia, Canada, V6C 1E1.

2. I am a graduate of the University of Cape Town in 1982 with a Masters of Science degree in Geochemistry and a graduate of Imperial College, London, in 1985 with a Master of Science degree in Computer Science.

3. I have worked as a geologist for a total of 35 years. My relevant experience for the purpose of the Technical Report is having managed and reviewed, as Vice President (Exploration) for the Anglo American Corporation of South Africa, numerous exploration and mining projects around the world for commodities including copper and gold.

4. I am registered as a Professional Geologist with the Association of Professional Engineers and Geoscientists of British Columbia (Lic.# 33259).

5. I have read the definition of “qualified person” set out in National Instrument 43-101 (NI 43 101) and certify that by reason of my education, professional affiliation, and past relevant work experience, I fulfil the requirement to be an independent qualified person for the purposes of NI 43-101.

7. I managed exploration on the Tatogga Property from 2011 to 2014 with numerous visits to the property of more than four days duration during this period. No work was carried out on the property in 2015, and there has been no material change to the property since 2014 as confirmed by my visit to the property from 27 July to 1 August 2016.

8. As of the date of the certificate, to the best of my knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.

9. I am independent of the issuer as described in Section 1.5 of National Instrument 43-101 and I am independent of the vendor of the property which is the subject of this report.

10. I have read National Instrument 43-101 and Form 43-101 F1, and this report has been prepared in compliance with NI 43-101 and Form 43-101 F1.

11. I consent to the filing by Manera Capital Corp. of the Technical Report with any stock exchange and other regulatory authority, and any publication by them, including electronic publication in company files on websites accessible by the public, of the Technical Report.

Dated this 12th day of August 2016.

C. P. Smyth

Signature Clinton P. Smyth, MSc, P. Geo